These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33586706)

  • 1. Twin-Screw Extrusion Process to Produce Renewable Fiberboards.
    Evon P; Labonne L; Khan SU; Ouagne P; Pontalier PY; Rouilly A
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33586706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards.
    Uitterhaegen E; Labonne L; Merah O; Talou T; Ballas S; Véronèse T; Evon P
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28714928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources.
    Vandenbossche V; Brault J; Hernandez-Melendez O; Evon P; Barzana E; Vilarem G; Rigal L
    Bioresour Technol; 2016 Jul; 211():146-53. PubMed ID: 27015021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrusion pretreatment of pine wood chips.
    Karunanithy C; Muthukumarappan K; Gibbons WR
    Appl Biochem Biotechnol; 2012 May; 167(1):81-99. PubMed ID: 22528654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: effect of hot-compressed water treatment.
    Lee SH; Inoue S; Teramoto Y; Endo T
    Bioresour Technol; 2010 Dec; 101(24):9645-9. PubMed ID: 20709531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive.
    Domínguez-Robles J; Tarrés Q; Delgado-Aguilar M; Rodríguez A; Espinach FX; Mutjé P
    Int J Biol Macromol; 2018 Mar; 108():927-935. PubMed ID: 29104050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing.
    Senturk-Ozer S; Gevgilili H; Kalyon DM
    Bioresour Technol; 2011 Oct; 102(19):9068-75. PubMed ID: 21831631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.
    Barakat A; de Vries H; Rouau X
    Bioresour Technol; 2013 Apr; 134():362-73. PubMed ID: 23499177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder.
    Gu BJ; Dhumal GS; Wolcott MP; Ganjyal GM
    Bioresour Technol; 2019 Mar; 275():266-271. PubMed ID: 30594836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol.
    Chen WH; Xu YY; Hwang WS; Wang JB
    Bioresour Technol; 2011 Nov; 102(22):10451-8. PubMed ID: 21958526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-lignocellulosic Fiberboard from Steam Exploded
    Ramos D; El Mansouri NE; Ferrando F; Salvadó J
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30134508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis.
    Liu W; Chen W; Hou Q; Zhang J; Wang B
    Bioresour Technol; 2017 Mar; 228():125-132. PubMed ID: 28061394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.
    Badgujar KC; Bhanage BM
    Bioresour Technol; 2015 Feb; 178():2-18. PubMed ID: 25451772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of medium density fiberboards made from renewable biomass.
    Ye XP; Julson J; Kuo M; Womac A; Myers D
    Bioresour Technol; 2007 Mar; 98(5):1077-84. PubMed ID: 16781143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends.
    Hosseinaei O; Harper DP; Bozell JJ; Rials TG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twin-screw extrusion for hemicellulose recovery: influence on extract purity and purification performance.
    Zeitoun R; Pontalier PY; Marechal P; Rigal L
    Bioresour Technol; 2010 Dec; 101(23):9348-54. PubMed ID: 20659798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.
    Li M; Gogos CG; Ioannidis N
    Int J Pharm; 2015 Jan; 478(1):103-112. PubMed ID: 25448572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants.
    Alzagameem A; Khaldi-Hansen BE; Büchner D; Larkins M; Kamm B; Witzleben S; Schulze M
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30332854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.