BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33586802)

  • 1. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters.
    Tripathy V; Saha A; Raghavachari K
    J Comput Chem; 2021 Apr; 42(10):719-734. PubMed ID: 33586802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-based models for dissociation of strong acids in water: Electrostatic embedding minimizes the dependence on the fragmentation schemes.
    Tripathy V; Raghavachari K
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.
    Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2009 Jun; 5(6):1573-84. PubMed ID: 26609850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically embedded many-body method for dipole moments, partial atomic charges, and charge transfer.
    Leverentz HR; Maerzke KA; Keasler SJ; Siepmann JI; Truhlar DG
    Phys Chem Chem Phys; 2012 Jun; 14(21):7669-78. PubMed ID: 22425812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach.
    Thapa B; Beckett D; Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2018 Mar; 14(3):1383-1394. PubMed ID: 29450992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment Quantum Mechanical Method for Large-Sized Ion-Water Clusters.
    Liu J; Qi LW; Zhang JZH; He X
    J Chem Theory Comput; 2017 May; 13(5):2021-2034. PubMed ID: 28379695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatically Embedded Molecular Tailoring Approach and Validation for Peptides.
    Isegawa M; Wang B; Truhlar DG
    J Chem Theory Comput; 2013 Mar; 9(3):1381-93. PubMed ID: 26587600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.
    Jose KV; Beckett D; Raghavachari K
    J Chem Theory Comput; 2015 Sep; 11(9):4238-47. PubMed ID: 26575919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Mechanical Investigation of Three-Dimensional Activity Cliffs Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Erickson J; Raghavachari K
    J Chem Inf Model; 2020 Jun; 60(6):2924-2938. PubMed ID: 32407081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point charge embedding for ONIOM excited states calculations.
    Biancardi A; Barnes J; Caricato M
    J Chem Phys; 2016 Dec; 145(22):224109. PubMed ID: 27984901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
    Yuan D; Shen X; Li W; Li S
    Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential.
    Wang B; Truhlar DG
    J Chem Theory Comput; 2012 Jun; 8(6):1989-98. PubMed ID: 26593833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36630261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of energetic properties of ionic liquid clusters using a fragment-based quantum mechanical method.
    Liu J; He X
    Phys Chem Chem Phys; 2017 Aug; 19(31):20657-20666. PubMed ID: 28737802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Constants, High Spin, and Broken Symmetry States of Organic Radicals: an Assessment of the Molecules-in-Molecules Fragmentation-Based Method.
    Sadhukhan T; Beckett D; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Nov; 15(11):5998-6009. PubMed ID: 31625737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.