BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33587060)

  • 1. Shape changes and budding of giant vesicles induced by an internal chemical trigger: an interplay between osmosis and pH change.
    Holló G; Miele Y; Rossi F; Lagzi I
    Phys Chem Chem Phys; 2021 Feb; 23(7):4262-4270. PubMed ID: 33587060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-division of giant vesicles driven by an internal enzymatic reaction.
    Miele Y; Medveczky Z; Holló G; Tegze B; Derényi I; Hórvölgyi Z; Altamura E; Lagzi I; Rossi F
    Chem Sci; 2020 Mar; 11(12):3228-3235. PubMed ID: 34122829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes).
    Rogerson ML; Robinson BH; Bucak S; Walde P
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):24-34. PubMed ID: 16466910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of oleic acid into phosphatidylcholine membranes is amplified by strain.
    Mally M; Peterlin P; Svetina S
    J Phys Chem B; 2013 Oct; 117(40):12086-94. PubMed ID: 24000876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inward multivesiculation at the basal membrane of adherent giant phospholipid vesicles.
    Moreno-Flores S
    Biochim Biophys Acta; 2016 Apr; 1858(4):793-9. PubMed ID: 26828120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the Membrane Composition of Giant Unilamellar Vesicles on Their Budding Probability: A Trade-Off between Elasticity and Preferred Area Difference.
    Miele Y; Holló G; Lagzi I; Rossi F
    Life (Basel); 2021 Jun; 11(7):. PubMed ID: 34209903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C12E8.
    Babnik B; Miklavcic D; Kanduser M; Hägerstrand H; Kralj-Iglic V; Iglic A
    Chem Phys Lipids; 2003 Oct; 125(2):123-38. PubMed ID: 14499471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids.
    Farge E; Devaux PF
    Biophys J; 1992 Feb; 61(2):347-57. PubMed ID: 1547324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical damage on giant vesicles membrane as a result of methylene blue photoirradiation.
    Mertins O; Bacellar IO; Thalmann F; Marques CM; Baptista MS; Itri R
    Biophys J; 2014 Jan; 106(1):162-71. PubMed ID: 24411248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological variation of a lipid vesicle confined in a spherical vesicle.
    Sakashita A; Imai M; Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):040701. PubMed ID: 24827172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume.
    Soga H; Fujii S; Yomo T; Kato Y; Watanabe H; Matsuura T
    ACS Synth Biol; 2014 Jun; 3(6):372-9. PubMed ID: 24328098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape transformation of giant phospholipid vesicles at high concentrations of C12E8.
    Mavcic B; Babnik B; Iglic A; Kanduser M; Slivnik T; Kralj-Iglic V
    Bioelectrochemistry; 2004 Jun; 63(1-2):183-7. PubMed ID: 15110270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotically induced shape changes of large unilamellar vesicles measured by dynamic light scattering.
    Pencer J; White GF; Hallett FR
    Biophys J; 2001 Nov; 81(5):2716-28. PubMed ID: 11606284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave measurement of giant unilamellar vesicles in aqueous solution.
    Cui Y; Delaney WF; Darroudi T; Wang P
    Sci Rep; 2018 Jan; 8(1):497. PubMed ID: 29323157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Budding of giant unilamellar vesicles induced by an amphitropic protein β2-glycoprotein I.
    Kovačič J; Božič B; Svetina S
    Biophys Chem; 2010 Nov; 152(1-3):46-54. PubMed ID: 20719426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicle budding caused by lysolipid-induced asymmetry stress.
    Hua L; Kaiser M; Carabadjac I; Meister A; Hause G; Heerklotz H
    Biophys J; 2023 Oct; 122(20):4011-4022. PubMed ID: 37649254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the pore-forming agent nystatin on giant phospholipid vesicles.
    Kristanc L; Svetina S; Gomišček G
    Biochim Biophys Acta; 2012 Mar; 1818(3):636-44. PubMed ID: 22178865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific binding of human C-reactive protein towards supported monolayers of binary and engineered phospholipids.
    Goda T; Miyahara Y
    Colloids Surf B Biointerfaces; 2018 Jan; 161():662-669. PubMed ID: 29172154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.