These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 33587075)
1. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Lv C; Zhang X; Liu Y; Zhang T; Chen H; Zang J; Zheng B; Zhao G Chem Soc Rev; 2021 Mar; 50(6):3957-3989. PubMed ID: 33587075 [TBL] [Abstract][Full Text] [Related]
2. Functionalization of protein-based nanocages for drug delivery applications. Schoonen L; van Hest JC Nanoscale; 2014 Jul; 6(13):7124-41. PubMed ID: 24860847 [TBL] [Abstract][Full Text] [Related]
3. Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Zhang X; Liu Y; Zheng B; Zang J; Lv C; Zhang T; Wang H; Zhao G Nat Commun; 2021 Aug; 12(1):4849. PubMed ID: 34381032 [TBL] [Abstract][Full Text] [Related]
4. Design and site-directed compartmentalization of gold nanoclusters within the intrasubunit interfaces of ferritin nanocage. Zang J; Zheng B; Zhang X; Arosio P; Zhao G J Nanobiotechnology; 2019 Jul; 17(1):79. PubMed ID: 31277668 [TBL] [Abstract][Full Text] [Related]
5. Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs. Zheng B; Zhou K; Zhang T; Lv C; Zhao G Nano Lett; 2019 Jun; 19(6):4023-4028. PubMed ID: 31099248 [TBL] [Abstract][Full Text] [Related]
6. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity. Li G; Li J; Zhang C; Hu Y; Li X; Chu J; Huang W; Wu D ACS Appl Mater Interfaces; 2015 Jan; 7(1):383-90. PubMed ID: 25473879 [TBL] [Abstract][Full Text] [Related]
7. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Truffi M; Fiandra L; Sorrentino L; Monieri M; Corsi F; Mazzucchelli S Pharmacol Res; 2016 May; 107():57-65. PubMed ID: 26968122 [TBL] [Abstract][Full Text] [Related]
8. Ferritin nanocage with intrinsically disordered proteins and affibody: A platform for tumor targeting with extended pharmacokinetics. Lee NK; Lee EJ; Kim S; Nam GH; Kih M; Hong Y; Jeong C; Yang Y; Byun Y; Kim IS J Control Release; 2017 Dec; 267():172-180. PubMed ID: 28821462 [TBL] [Abstract][Full Text] [Related]
9. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues. Zhou K; Zang J; Chen H; Wang W; Wang H; Zhao G ACS Nano; 2018 Nov; 12(11):11323-11332. PubMed ID: 30265511 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly of engineered protein nanocages into reversible ordered 3D superlattices mediated by zinc ions. Chen H; Zhou K; Wang Y; Zang J; Zhao G Chem Commun (Camb); 2019 Sep; 55(75):11299-11302. PubMed ID: 31475999 [TBL] [Abstract][Full Text] [Related]
11. "Silent" Amino Acid Residues at Key Subunit Interfaces Regulate the Geometry of Protein Nanocages. Zhang S; Zang J; Zhang X; Chen H; Mikami B; Zhao G ACS Nano; 2016 Nov; 10(11):10382-10388. PubMed ID: 27934076 [TBL] [Abstract][Full Text] [Related]
12. Design and Applications of Protein-Cage-Based Nanomaterials. Zhang Y; Ardejani MS; Orner BP Chem Asian J; 2016 Oct; 11(20):2814-2828. PubMed ID: 27432619 [TBL] [Abstract][Full Text] [Related]
13. Ferritin nanocages: a versatile platform for nanozyme design. Wang C; Liu Q; Huang X; Zhuang J J Mater Chem B; 2023 May; 11(19):4153-4170. PubMed ID: 37158014 [TBL] [Abstract][Full Text] [Related]
14. Plant viruses as biotemplates for materials and their use in nanotechnology. Young M; Willits D; Uchida M; Douglas T Annu Rev Phytopathol; 2008; 46():361-84. PubMed ID: 18473700 [TBL] [Abstract][Full Text] [Related]
15. The Size Flexibility of Ferritin Nanocage Opens a New Way to Prepare Nanomaterials. Zhang S; Zang J; Chen H; Li M; Xu C; Zhao G Small; 2017 Oct; 13(37):. PubMed ID: 28786527 [TBL] [Abstract][Full Text] [Related]
16. Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages. Zang J; Chen H; Zhang X; Zhang C; Guo J; Du M; Zhao G Nat Commun; 2019 Feb; 10(1):778. PubMed ID: 30770832 [TBL] [Abstract][Full Text] [Related]
17. Shape-Anisotropic Assembly of Protein Nanocages with Identical Building Blocks by Designed Intermolecular π-π Interactions. Chen X; Zhang T; Liu H; Zang J; Lv C; Du M; Zhao G Adv Sci (Weinh); 2023 Dec; 10(35):e2305398. PubMed ID: 37870198 [TBL] [Abstract][Full Text] [Related]
18. A Versatile Virus-Mimetic Engineering Approach for Concurrent Protein Nanocage Surface-Functionalization and Cargo Encapsulation. Sheng Y; Chen Z; Cherrier MV; Martin L; Bui TTT; Li W; Lynham S; Nicolet Y; Ebrahimi KH Small; 2024 Aug; 20(31):e2310913. PubMed ID: 38726952 [TBL] [Abstract][Full Text] [Related]
19. Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes. Gu C; Chen H; Wang Y; Zhang T; Wang H; Zhao G Chemistry; 2020 Mar; 26(14):3016-3021. PubMed ID: 31820500 [TBL] [Abstract][Full Text] [Related]
20. Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation. Berckman EA; Chen W Biotechnol Prog; 2021 Sep; 37(5):e3190. PubMed ID: 34173352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]