These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 33587151)

  • 1. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding.
    Voss-Fels KP; Wei X; Ross EM; Frisch M; Aitken KS; Cooper M; Hayes BJ
    Theor Appl Genet; 2021 May; 134(5):1493-1511. PubMed ID: 33587151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of genomic prediction of complex traits in sugarcane.
    Hayes BJ; Wei X; Joyce P; Atkin F; Deomano E; Yue J; Nguyen L; Ross EM; Cavallaro T; Aitken KS; Voss-Fels KP
    Theor Appl Genet; 2021 May; 134(5):1455-1462. PubMed ID: 33590303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.).
    Bassi FM; Bentley AR; Charmet G; Ortiz R; Crossa J
    Plant Sci; 2016 Jan; 242():23-36. PubMed ID: 26566822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Different Strategies for Exploiting Genomic Selection in Perennial Ryegrass Breeding Programs.
    Esfandyari H; Fè D; Tessema BB; Janss LL; Jensen J
    G3 (Bethesda); 2020 Oct; 10(10):3783-3795. PubMed ID: 32819970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal implementation of genomic selection in clone breeding programs-Exemplified in potato: I. Effect of selection strategy, implementation stage, and selection intensity on short-term genetic gain.
    Wu PY; Stich B; Renner J; Muders K; Prigge V; van Inghelandt D
    Plant Genome; 2023 Jun; 16(2):e20327. PubMed ID: 37177848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The value of early-stage phenotyping for wheat breeding in the age of genomic selection.
    Borrenpohl D; Huang M; Olson E; Sneller C
    Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects.
    Yadav S; Wei X; Joyce P; Atkin F; Deomano E; Sun Y; Nguyen LT; Ross EM; Cavallaro T; Aitken KS; Hayes BJ; Voss-Fels KP
    Theor Appl Genet; 2021 Jul; 134(7):2235-2252. PubMed ID: 33903985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic selection strategies to increase genetic gain in tea breeding programs.
    Lubanga N; Massawe F; Mayes S; Gorjanc G; Bančič J
    Plant Genome; 2023 Mar; 16(1):e20282. PubMed ID: 36349831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits.
    Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH
    Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of genomic selection prediction for rust resistance in sugarcane.
    Islam MS; McCord PH; Olatoye MO; Qin L; Sood S; Lipka AE; Todd JR
    Plant Genome; 2021 Nov; 14(3):e20148. PubMed ID: 34510803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gains through selection for grain yield in a winter wheat breeding program.
    Lozada DN; Ward BP; Carter AH
    PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotyping marker density and prediction models effects in long-term breeding schemes of cross-pollinated crops.
    DoVale JC; Carvalho HF; Sabadin F; Fritsche-Neto R
    Theor Appl Genet; 2022 Dec; 135(12):4523-4539. PubMed ID: 36261658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection.
    Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm.
    Cros D; Denis M; Bouvet JM; Sánchez L
    BMC Genomics; 2015 Aug; 16(1):651. PubMed ID: 26318484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Lemarié S; Fugeray-Scarbel A; Elsen JM
    Animal; 2016 Jun; 10(6):1033-41. PubMed ID: 26446712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review.
    Anilkumar C; Sunitha NC; Harikrishna ; Devate NB; Ramesh S
    Planta; 2022 Sep; 256(5):87. PubMed ID: 36149531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.
    Spindel J; Begum H; Akdemir D; Virk P; Collard B; Redoña E; Atlin G; Jannink JL; McCouch SR
    PLoS Genet; 2015 Feb; 11(2):e1004982. PubMed ID: 25689273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study.
    Muleta KT; Pressoir G; Morris GP
    G3 (Bethesda); 2019 Feb; 9(2):391-401. PubMed ID: 30530641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of methods and marker Systems in Genomic Selection of oil palm (Elaeis guineensis Jacq.).
    Kwong QB; Teh CK; Ong AL; Chew FT; Mayes S; Kulaveerasingam H; Tammi M; Yeoh SH; Appleton DR; Harikrishna JA
    BMC Genet; 2017 Dec; 18(1):107. PubMed ID: 29228905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.