These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 33587585)
1. Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. Portilla Y; Mellid S; Paradela A; Ramos-Fernández A; Daviu N; Sanz-Ortega L; Pérez-Yagüe S; Morales MP; Barber DF ACS Appl Mater Interfaces; 2021 Feb; 13(7):7924-7944. PubMed ID: 33587585 [TBL] [Abstract][Full Text] [Related]
2. Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: A key for protein corona formation. Magro M; Cozza G; Molinari S; Venerando A; Baratella D; Miotto G; Zennaro L; Rossetto M; Frömmel J; Kopečná M; Šebela M; Salviulo G; Vianello F Int J Biol Macromol; 2020 Dec; 164():1715-1728. PubMed ID: 32758605 [TBL] [Abstract][Full Text] [Related]
3. Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Hoang KNL; Wheeler KE; Murphy CJ Anal Chem; 2022 Mar; 94(11):4737-4746. PubMed ID: 35258278 [TBL] [Abstract][Full Text] [Related]
4. How Corona Formation Impacts Nanomaterials as Drug Carriers. Gupta MN; Roy I Mol Pharm; 2020 Mar; 17(3):725-737. PubMed ID: 31939673 [TBL] [Abstract][Full Text] [Related]
5. Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles. Francia V; Yang K; Deville S; Reker-Smit C; Nelissen I; Salvati A ACS Nano; 2019 Oct; 13(10):11107-11121. PubMed ID: 31525954 [TBL] [Abstract][Full Text] [Related]
6. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Portilla Y; Mulens-Arias V; Paradela A; Ramos-Fernández A; Pérez-Yagüe S; Morales MP; Barber DF Biomaterials; 2022 Feb; 281():121365. PubMed ID: 35038611 [TBL] [Abstract][Full Text] [Related]
7. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors. Safavi-Sohi R; Maghari S; Raoufi M; Jalali SA; Hajipour MJ; Ghassempour A; Mahmoudi M ACS Appl Mater Interfaces; 2016 Sep; 8(35):22808-18. PubMed ID: 27526263 [TBL] [Abstract][Full Text] [Related]
8. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. Pustulka SM; Ling K; Pish SL; Champion JA ACS Appl Mater Interfaces; 2020 Oct; 12(43):48284-48295. PubMed ID: 33054178 [TBL] [Abstract][Full Text] [Related]
9. Uptake of Upconverting Nanoparticles by Breast Cancer Cells: Surface Coating versus the Protein Corona. Voronovic E; Skripka A; Jarockyte G; Ger M; Kuciauskas D; Kaupinis A; Valius M; Rotomskis R; Vetrone F; Karabanovas V ACS Appl Mater Interfaces; 2021 Aug; 13(33):39076-39087. PubMed ID: 34378375 [TBL] [Abstract][Full Text] [Related]
10. Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice. Portilla Y; Fernández-Afonso Y; Pérez-Yagüe S; Mulens-Arias V; Morales MP; Gutiérrez L; Barber DF J Nanobiotechnology; 2022 Dec; 20(1):543. PubMed ID: 36578018 [TBL] [Abstract][Full Text] [Related]
11. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Moraru C; Mincea M; Menghiu G; Ostafe V Molecules; 2020 Oct; 25(20):. PubMed ID: 33081296 [TBL] [Abstract][Full Text] [Related]
12. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. Cheng X; Tian X; Wu A; Li J; Tian J; Chong Y; Chai Z; Zhao Y; Chen C; Ge C ACS Appl Mater Interfaces; 2015 Sep; 7(37):20568-75. PubMed ID: 26364560 [TBL] [Abstract][Full Text] [Related]
13. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Sakulkhu U; Mahmoudi M; Maurizi L; Coullerez G; Hofmann-Amtenbrink M; Vries M; Motazacker M; Rezaee F; Hofmann H Biomater Sci; 2015 Feb; 3(2):265-78. PubMed ID: 26218117 [TBL] [Abstract][Full Text] [Related]
14. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Liu N; Tang M; Ding J Chemosphere; 2020 Apr; 245():125624. PubMed ID: 31864050 [TBL] [Abstract][Full Text] [Related]
15. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review. Kopac T Int J Biol Macromol; 2021 Feb; 169():290-301. PubMed ID: 33340622 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Cellular Transduction of Nanoparticles Resistant to Rapidly Forming Plasma Protein Coronas. Blokpoel Ferreras LA; Scott D; Vazquez Reina S; Roach P; Torres TE; Goya GF; Shakesheff KM; Dixon JE Adv Biosyst; 2020 Oct; 4(10):e2000162. PubMed ID: 32924327 [TBL] [Abstract][Full Text] [Related]
17. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum. Mirshafiee V; Kim R; Mahmoudi M; Kraft ML Int J Biochem Cell Biol; 2016 Jun; 75():188-95. PubMed ID: 26643610 [TBL] [Abstract][Full Text] [Related]
18. Cellular Uptake of Upconversion Nanoparticles Based on Surface Polymer Coatings and Protein Corona. Malhotra K; Kumar B; Piunno PAE; Krull UJ ACS Appl Mater Interfaces; 2024 Jul; 16(28):35985-36001. PubMed ID: 38958411 [TBL] [Abstract][Full Text] [Related]
19. Core, Coating, or Corona? The Importance of Considering Protein Coronas in nano-QSPR Modeling of Zeta Potential. Sengottiyan S; Mikolajczyk A; Jagiełło K; Swirog M; Puzyn T ACS Nano; 2023 Feb; 17(3):1989-1997. PubMed ID: 36651824 [TBL] [Abstract][Full Text] [Related]
20. Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma. Ortega VA; Bahniuk MS; Memon S; Unsworth LD; Stafford JL; Goss GG Biointerphases; 2020 Sep; 15(5):051003. PubMed ID: 32957792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]