These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33587596)

  • 1. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO
    Jeon B; Lee H; Goddeti KC; Park JY
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15152-15159. PubMed ID: 30939872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide.
    Kim H; Kim YJ; Jung YS; Park JY
    Nanoscale Adv; 2020 Oct; 2(10):4410-4416. PubMed ID: 36132908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
    Lee YK; Lee H; Lee C; Hwang E; Park JY
    J Phys Condens Matter; 2016 Jun; 28(25):254006. PubMed ID: 27168177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.
    Lee H; Nedrygailov II; Lee YK; Lee C; Choi H; Choi JS; Choi CG; Park JY
    Nano Lett; 2016 Mar; 16(3):1650-6. PubMed ID: 26910271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic nanodiode: detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction.
    Park JY; Somorjai GA
    Chemphyschem; 2006 Jul; 7(7):1409-13. PubMed ID: 16739158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots.
    Lee C; Choi H; Nedrygailov II; Lee YK; Jeong S; Park JY
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5081-5089. PubMed ID: 29308649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers.
    Lee YK; Lee H; Park JY
    Sci Rep; 2014 Apr; 4():4580. PubMed ID: 24694838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical tuning effect for Schottky barrier and hot-electron harvest in a plasmonic Au/TiO
    Sun Z; Fang Y
    Sci Rep; 2021 Jan; 11(1):338. PubMed ID: 33432085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot Electrons at Solid-Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide.
    Nedrygailov II; Lee C; Moon SY; Lee H; Park JY
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10859-62. PubMed ID: 27374493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes.
    Lee YK; Jung CH; Park J; Seo H; Somorjai GA; Park JY
    Nano Lett; 2011 Oct; 11(10):4251-5. PubMed ID: 21916449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Loss Mechanism of Chemically-Induced Hot Electron Transport.
    Roh Y; Jin Y; Jeon B; Park Y; Yu K; Park JY
    Nano Lett; 2024 Mar; 24(11):3490-3497. PubMed ID: 38466136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-visible photocurrent enhancement using metal-semiconductor-metal with symmetric and asymmetric double Schottky barriers.
    Zhu L; Liu K; Hu T; Dong W; Chen Z; Wang Z
    Nanoscale; 2018 Jul; 10(26):12848-12854. PubMed ID: 29947633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes.
    Lee C; Nedrygailov II; Lee YK; Ahn C; Lee H; Jeon S; Park JY
    Nanotechnology; 2015 Nov; 26(44):445201. PubMed ID: 26451470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.