These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33587703)
1. Enhancing EEG-Based Classification of Depression Patients Using Spatial Information. Jiang C; Li Y; Tang Y; Guan C IEEE Trans Neural Syst Rehabil Eng; 2021; 29():566-575. PubMed ID: 33587703 [TBL] [Abstract][Full Text] [Related]
2. EEG-based mild depressive detection using feature selection methods and classifiers. Li X; Hu B; Sun S; Cai H Comput Methods Programs Biomed; 2016 Nov; 136():151-61. PubMed ID: 27686712 [TBL] [Abstract][Full Text] [Related]
3. A machine learning based depression screening framework using temporal domain features of the electroencephalography signals. Khan S; Umar Saeed SM; Frnda J; Arsalan A; Amin R; Gantassi R; Noorani SH PLoS One; 2024; 19(3):e0299127. PubMed ID: 38536782 [TBL] [Abstract][Full Text] [Related]
4. Study on Feature Selection Methods for Depression Detection Using Three-Electrode EEG Data. Cai H; Chen Y; Han J; Zhang X; Hu B Interdiscip Sci; 2018 Sep; 10(3):558-565. PubMed ID: 29728983 [TBL] [Abstract][Full Text] [Related]
5. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
6. Upper limb complex movements decoding from pre-movement EEG signals using wavelet common spatial patterns. Mohseni M; Shalchyan V; Jochumsen M; Niazi IK Comput Methods Programs Biomed; 2020 Jan; 183():105076. PubMed ID: 31546195 [TBL] [Abstract][Full Text] [Related]
7. Cross-subject classification of depression by using multiparadigm EEG feature fusion. Yang J; Zhang Z; Fu Z; Li B; Xiong P; Liu X Comput Methods Programs Biomed; 2023 May; 233():107360. PubMed ID: 36944276 [TBL] [Abstract][Full Text] [Related]
8. Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals. Singh G; Singh B; Kaur M Med Biol Eng Comput; 2019 Jun; 57(6):1323-1339. PubMed ID: 30756231 [TBL] [Abstract][Full Text] [Related]
9. Motor imagery EEG classification based on ensemble support vector learning. Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387 [TBL] [Abstract][Full Text] [Related]
10. An integrated entropy-spatial framework for automatic gender recognition enhancement of emotion-based EEGs. Al-Qazzaz NK; Sabir MK; Al-Timemy AH; Grammer K Med Biol Eng Comput; 2022 Feb; 60(2):531-550. PubMed ID: 35023073 [TBL] [Abstract][Full Text] [Related]
11. Classification of multi-class motor imagery EEG using four band common spatial pattern. Mahmood A; Zainab R; Ahmad RB; Saeed M; Kamboh AM Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1034-1037. PubMed ID: 29060050 [TBL] [Abstract][Full Text] [Related]
12. Assessment of CSP-based two-stage channel selection approach and local transformation-based feature extraction for classification of motor imagery/movement EEG data. Onay FK; Köse C Biomed Tech (Berl); 2019 Dec; 64(6):643-653. PubMed ID: 31095507 [TBL] [Abstract][Full Text] [Related]
13. Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study. Sharmila A; Aman Raj S; Shashank P; Mahalakshmi P J Med Eng Technol; 2018 Jan; 42(1):1-8. PubMed ID: 29251059 [TBL] [Abstract][Full Text] [Related]
14. Efficient sleep classification based on entropy features and a support vector machine classifier. Zhang Z; Wei S; Zhu G; Liu F; Li Y; Dong X; Liu C; Liu F Physiol Meas; 2018 Nov; 39(11):115005. PubMed ID: 30475743 [TBL] [Abstract][Full Text] [Related]
15. Classification of sleep apnea based on EEG sub-band signal characteristics. Zhao X; Wang X; Yang T; Ji S; Wang H; Wang J; Wang Y; Wu Q Sci Rep; 2021 Mar; 11(1):5824. PubMed ID: 33712651 [TBL] [Abstract][Full Text] [Related]
16. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms. Liu R; Zhang Z; Duan F; Zhou X; Meng Z Comput Intell Neurosci; 2017; 2017():2727856. PubMed ID: 28874909 [TBL] [Abstract][Full Text] [Related]
17. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. Al Ghayab HR; Li Y; Siuly S; Abdulla S J Neurosci Methods; 2019 Jan; 312():43-52. PubMed ID: 30468823 [TBL] [Abstract][Full Text] [Related]
18. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques. Alturki FA; AlSharabi K; Abdurraqeeb AM; Aljalal M Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32354161 [TBL] [Abstract][Full Text] [Related]
19. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces. Dong E; Li C; Li L; Du S; Belkacem AN; Chen C Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175 [TBL] [Abstract][Full Text] [Related]
20. Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification. Li F; Fan Y; Zhang X; Wang C; Hu F; Jia W; Hui H J Med Syst; 2019 Dec; 44(2):39. PubMed ID: 31865469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]