These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33587706)

  • 1. StructADMM: Achieving Ultrahigh Efficiency in Structured Pruning for DNNs.
    Zhang T; Ye S; Feng X; Ma X; Zhang K; Li Z; Tang J; Liu S; Lin X; Liu Y; Fardad M; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2259-2273. PubMed ID: 33587706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Structured DNN Weight Pruning-Is It Beneficial in Any Platform?
    Ma X; Lin S; Ye S; He Z; Zhang L; Yuan G; Tan SH; Li Z; Fan D; Qian X; Lin X; Ma K; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4930-4944. PubMed ID: 33735086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature flow regularization: Improving structured sparsity in deep neural networks.
    Wu Y; Lan Y; Zhang L; Xiang Y
    Neural Netw; 2023 Apr; 161():598-613. PubMed ID: 36822145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRIM: A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity.
    Niu W; Li Z; Ma X; Dong P; Zhou G; Qian X; Lin X; Wang Y; Ren B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6224-6239. PubMed ID: 34133272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Compact ConvNets via Structure-Sparsity Regularized Filter Pruning.
    Lin S; Ji R; Li Y; Deng C; Li X
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):574-588. PubMed ID: 30990448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LAP: Latency-aware automated pruning with dynamic-based filter selection.
    Chen Z; Liu C; Yang W; Li K; Li K
    Neural Netw; 2022 Aug; 152():407-418. PubMed ID: 35609502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak sub-network pruning for strong and efficient neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2021 Dec; 144():614-626. PubMed ID: 34653719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination-Aware Network Pruning for Deep Model Compression.
    Liu J; Zhuang B; Zhuang Z; Guo Y; Huang J; Zhu J; Tan M
    IEEE Trans Pattern Anal Mach Intell; 2022 Aug; 44(8):4035-4051. PubMed ID: 33755553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCA driven mixed filter pruning for efficient convNets.
    Ahmed W; Ansari S; Hanif M; Khalil A
    PLoS One; 2022; 17(1):e0262386. PubMed ID: 35073373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random pruning: channel sparsity by expectation scaling factor.
    Sun C; Chen J; Li Y; Wang W; Ma T
    PeerJ Comput Sci; 2023; 9():e1564. PubMed ID: 37705629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDropout: Energy-Based Dropout and Pruning of Deep Neural Networks.
    Salehinejad H; Valaee S
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5279-5292. PubMed ID: 33830931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRESPR: Modular sparsification of DNNs to improve pruning performance and model interpretability.
    Kang T; Ding W; Chen P
    Neural Netw; 2024 Apr; 172():106067. PubMed ID: 38199151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured pruning of recurrent neural networks through neuron selection.
    Wen L; Zhang X; Bai H; Xu Z
    Neural Netw; 2020 Mar; 123():134-141. PubMed ID: 31855748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.
    Lee CH; Fedorov I; Rao BD; Garudadri H
    Proc IEEE Int Conf Acoust Speech Signal Process; 2020 May; 2020():5410-5414. PubMed ID: 33162834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heuristic Method for Minimizing Model Size of CNN by Combining Multiple Pruning Techniques.
    Tian D; Yamagiwa S; Wada K
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding.
    Wu X; Lin DT; Chen R; Bhattacharyya SS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288
    [No Abstract]   [Full Text] [Related]  

  • 17. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of deep autoencoder weights for model compression and classification of tabular data.
    Abrar S; Samad MD
    Neural Netw; 2022 Dec; 156():160-169. PubMed ID: 36270199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-Grained Pruning of Neural Network Models Based on Blocky Sparse Structure.
    Huang L; Zeng J; Sun S; Wang W; Wang Y; Wang K
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention.
    Tian G; Sun Y; Liu Y; Zeng X; Wang M; Liu Y; Zhang J; Chen J
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; PP():. PubMed ID: 34487502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.