These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33587709)

  • 1. Massive-Scale Aerial Photo Categorization by Cross-Resolution Visual Perception Enhancement.
    Zhang L; Zhang X; Xu M; Shao L
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):4017-4030. PubMed ID: 33587709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-Supervised Perception Augmentation for Aerial Photo Topologies Understanding.
    Zhang L; Pan Z; Shao L
    IEEE Trans Image Process; 2021; 30():7803-7814. PubMed ID: 34003752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community-Aware Photo Quality Evaluation by Deeply Encoding Human Perception.
    Zhang L; Shang Y; Li P; Luo H; Shao L
    IEEE Trans Cybern; 2022 May; 52(5):3136-3146. PubMed ID: 32735541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LR Aerial Photo Categorization by Cross-Resolution Perceptual Knowledge Propagation.
    Li Y; Zhang L; Shao L
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38252579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptually Aware Image Retargeting for Mobile Devices.
    Zhou Y; Zhang L; Zhang C; Li P; Li X
    IEEE Trans Image Process; 2018 May; 27(5):2301-2313. PubMed ID: 29451495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Active Learning with Contaminated Tags for Image Aesthetics Assessment.
    Liu Z; Wang Z; Yao Y; Zhang L; Shao L
    IEEE Trans Image Process; 2018 Apr; ():. PubMed ID: 29993633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakly Supervised Multimodal Kernel for Categorizing Aerial Photographs.
    Yingjie Xia ; Luming Zhang ; Zhenguang Liu ; Liqiang Nie ; Xuelong Li
    IEEE Trans Image Process; 2017 Aug; 26(8):3748-3758. PubMed ID: 28113314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Scene Classification by Deep Active Learning With Remote Sensing Applications.
    Zhang L; Su G; Yin J; Li Y; Lin Q; Zhang X; Shao L
    IEEE Trans Cybern; 2022 Jul; 52(7):5682-5694. PubMed ID: 33635802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scene Categorization by Deeply Learning Gaze Behavior in a Semisupervised Context.
    Zhang L; Liang R; Yin J; Zhang D; Shao L
    IEEE Trans Cybern; 2021 Aug; 51(8):4265-4276. PubMed ID: 31144650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scene Categorization Using Deeply Learned Gaze Shifting Kernel.
    Sun X; Zhang L; Wang Z; Chang J; Yao Y; Li P; Zimmermann R
    IEEE Trans Cybern; 2019 Jun; 49(6):2156-2167. PubMed ID: 29993760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Aerial Image Categorization Using a Multitask Topological Codebook.
    Zhang L; Wang M; Hong R; Yin BC; Li X
    IEEE Trans Cybern; 2016 Feb; 46(2):535-45. PubMed ID: 25794407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weakly Supervised Complets Ranking for Deep Image Quality Modeling.
    Zhang L; Xu M; Yin J; Zhang C; Shao L
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5041-5054. PubMed ID: 32167910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of human engagement depicted in contextual photographs on the visual attention patterns of adults with traumatic brain injury.
    Thiessen A; Brown J; Beukelman D; Hux K
    J Commun Disord; 2017 Sep; 69():58-71. PubMed ID: 28783543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GAN-Based Image Colorization for Self-Supervised Visual Feature Learning.
    Treneska S; Zdravevski E; Pires IM; Lameski P; Gievska S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Semantic Enhanced ConvNet for Aerial Scene Recognition.
    Bi Q; Qin K; Zhang H; Xia GS
    IEEE Trans Image Process; 2021; 30():6498-6511. PubMed ID: 34236963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesizing Supervision for Learning Deep Saliency Network without Human Annotation.
    Zhang D; Han J; Zhang Y; Xu D
    IEEE Trans Pattern Anal Mach Intell; 2020 Jul; 42(7):1755-1769. PubMed ID: 30794509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Patient Photographs on Radiologists' Visual Search of Chest Radiographs.
    Krupinski EA; Chung A; Applegate K; DeSimone AK; Tridandapani S
    Acad Radiol; 2016 Aug; 23(8):953-60. PubMed ID: 27161208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual attention prediction improves performance of autonomous drone racing agents.
    Pfeiffer C; Wengeler S; Loquercio A; Scaramuzza D
    PLoS One; 2022; 17(3):e0264471. PubMed ID: 35231038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications.
    Lo LY; Yiu CH; Tang Y; Yang AS; Li B; Wen CY
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.