These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33587714)
21. Robust image classification against adversarial attacks using elastic similarity measures between edge count sequences. Oregi I; Del Ser J; Pérez A; Lozano JA Neural Netw; 2020 Aug; 128():61-72. PubMed ID: 32442627 [TBL] [Abstract][Full Text] [Related]
22. Implicit adversarial data augmentation and robustness with Noise-based Learning. Panda P; Roy K Neural Netw; 2021 Sep; 141():120-132. PubMed ID: 33894652 [TBL] [Abstract][Full Text] [Related]
23. Improving Adversarial Robustness of Deep Neural Networks via Adaptive Margin Evolution. Ma L; Liang L Neurocomputing (Amst); 2023 Sep; 551():. PubMed ID: 37587916 [TBL] [Abstract][Full Text] [Related]
24. Training Robust Deep Neural Networks via Adversarial Noise Propagation. Liu A; Liu X; Yu H; Zhang C; Liu Q; Tao D IEEE Trans Image Process; 2021; 30():5769-5781. PubMed ID: 34161231 [TBL] [Abstract][Full Text] [Related]
25. An Empirical Study on the Effect of Training Data Perturbations on Neural Network Robustness. Wang J; Wu Z; Lu M; Ai J Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123921 [TBL] [Abstract][Full Text] [Related]
26. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Elfwing S; Uchibe E; Doya K Neural Netw; 2018 Nov; 107():3-11. PubMed ID: 29395652 [TBL] [Abstract][Full Text] [Related]
27. Spatial-temporal recurrent reinforcement learning for autonomous ships. Waltz M; Okhrin O Neural Netw; 2023 Aug; 165():634-653. PubMed ID: 37364473 [TBL] [Abstract][Full Text] [Related]
28. Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network. Meng W; Zheng Q; Yang L; Li P; Pan G IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4374-4380. PubMed ID: 31765320 [TBL] [Abstract][Full Text] [Related]
29. Towards evaluating the robustness of deep diagnostic models by adversarial attack. Xu M; Zhang T; Li Z; Liu M; Zhang D Med Image Anal; 2021 Apr; 69():101977. PubMed ID: 33550005 [TBL] [Abstract][Full Text] [Related]
30. Human-level control through deep reinforcement learning. Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670 [TBL] [Abstract][Full Text] [Related]
32. Stylized Adversarial Defense. Naseer M; Khan S; Hayat M; Khan FS; Porikli F IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):6403-6414. PubMed ID: 36121953 [TBL] [Abstract][Full Text] [Related]
33. A Robust Mean-Field Actor-Critic Reinforcement Learning Against Adversarial Perturbations on Agent States. Zhou Z; Liu G; Zhou M IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14370-14381. PubMed ID: 37276092 [TBL] [Abstract][Full Text] [Related]
35. Approaching Adversarial Example Classification with Chaos Theory. Pedraza A; Deniz O; Bueno G Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286969 [TBL] [Abstract][Full Text] [Related]
36. Adversarial parameter defense by multi-step risk minimization. Zhang Z; Luo R; Ren X; Su Q; Li L; Sun X Neural Netw; 2021 Dec; 144():154-163. PubMed ID: 34500254 [TBL] [Abstract][Full Text] [Related]
37. Approximate Policy-Based Accelerated Deep Reinforcement Learning. Wang X; Gu Y; Cheng Y; Liu A; Chen CLP IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131 [TBL] [Abstract][Full Text] [Related]
38. On the Minimal Adversarial Perturbation for Deep Neural Networks With Provable Estimation Error. Brau F; Rossolini G; Biondi A; Buttazzo G IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):5038-5052. PubMed ID: 35914038 [TBL] [Abstract][Full Text] [Related]
39. Towards Adversarial Robustness with Early Exit Ensembles. Qendro L; Mascolo C Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():313-316. PubMed ID: 36086386 [TBL] [Abstract][Full Text] [Related]
40. Training Provably Robust Models by Polyhedral Envelope Regularization. Liu C; Salzmann M; Susstrunk S IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3146-3160. PubMed ID: 34699369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]