These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 33587933)
21. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
22. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents. Levet A; Bordes C; Clément Y; Mignon P; Chermette H; Marote P; Cren-Olivé C; Lantéri P Chemosphere; 2013 Oct; 93(6):1094-103. PubMed ID: 23866172 [TBL] [Abstract][Full Text] [Related]
23. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies. Nendza M; Müller M; Wenzel A Environ Sci Process Impacts; 2017 Mar; 19(3):429-437. PubMed ID: 28165522 [TBL] [Abstract][Full Text] [Related]
24. Development of a chronic fish toxicity model for predicting sub-lethal NOEC values for non-polar narcotics. Austin TJ; Eadsforth CV SAR QSAR Environ Res; 2014; 25(2):147-60. PubMed ID: 24635482 [TBL] [Abstract][Full Text] [Related]
25. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish. Moore DR; Breton RL; MacDonald DB Environ Toxicol Chem; 2003 Aug; 22(8):1799-809. PubMed ID: 12924579 [TBL] [Abstract][Full Text] [Related]
26. Exploring QSAR models for assessment of acute fish toxicity of environmental transformation products of pesticides (ETPPs). Pandey SK; Ojha PK; Roy K Chemosphere; 2020 Aug; 252():126508. PubMed ID: 32240857 [TBL] [Abstract][Full Text] [Related]
27. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). Sobanska M; Scholz S; Nyman AM; Cesnaitis R; Gutierrez Alonso S; Klüver N; Kühne R; Tyle H; de Knecht J; Dang Z; Lundbergh I; Carlon C; De Coen W Environ Toxicol Chem; 2018 Mar; 37(3):657-670. PubMed ID: 29226368 [TBL] [Abstract][Full Text] [Related]
28. Development of in silico models for predicting LSER molecular parameters and for acute toxicity prediction to fathead minnow (Pimephales promelas). Lyakurwa FS; Yang X; Li X; Qiao X; Chen J Chemosphere; 2014 Aug; 108():17-25. PubMed ID: 24875907 [TBL] [Abstract][Full Text] [Related]
29. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748 [TBL] [Abstract][Full Text] [Related]
30. QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes to fish. Zvinavashe E; van den Berg H; Soffers AE; Vervoort J; Freidig A; Murk AJ; Rietjens IM Chem Res Toxicol; 2008 Mar; 21(3):739-45. PubMed ID: 18254607 [TBL] [Abstract][Full Text] [Related]
31. The OECD Principles for (Q)SAR Models in the Context of Knowledge Discovery in Databases (KDD). Gómez-Jiménez G; Gonzalez-Ponce K; Castillo-Pazos DJ; Madariaga-Mazon A; Barroso-Flores J; Cortes-Guzman F; Martinez-Mayorga K Adv Protein Chem Struct Biol; 2018; 113():85-117. PubMed ID: 30149907 [TBL] [Abstract][Full Text] [Related]
32. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988 [TBL] [Abstract][Full Text] [Related]
33. Using toxicological evidence from QSAR models in practice. Benfenati E; Pardoe S; Martin T; Gonella Diaza R; Lombardo A; Manganaro A; Gissi A ALTEX; 2013; 30(1):19-40. PubMed ID: 23338804 [TBL] [Abstract][Full Text] [Related]
34. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes. Basant N; Gupta S; Singh KP Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829 [TBL] [Abstract][Full Text] [Related]
35. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals. Licht O; Weyers A; Nagel R Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630 [TBL] [Abstract][Full Text] [Related]
36. QSAR study of the acute toxicity to fathead minnow based on a large dataset. Wu X; Zhang Q; Hu J SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563 [TBL] [Abstract][Full Text] [Related]
37. QSAR model for predicting the toxicity of organic compounds to fathead minnow. Jia Q; Zhao Y; Yan F; Wang Q Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137 [TBL] [Abstract][Full Text] [Related]
38. An ensemble model of QSAR tools for regulatory risk assessment. Pradeep P; Povinelli RJ; White S; Merrill SJ J Cheminform; 2016; 8():48. PubMed ID: 28316646 [TBL] [Abstract][Full Text] [Related]
39. Building on a solid foundation: SAR and QSAR as a fundamental strategy to reduce animal testing. Sullivan KM; Manuppello JR; Willett CE SAR QSAR Environ Res; 2014; 25(5):357-65. PubMed ID: 24773450 [TBL] [Abstract][Full Text] [Related]
40. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. Connolly M; Moles G; Carniel FC; Tretiach M; Caorsi G; Flahaut E; Soula B; Pinelli E; Gauthier L; Mouchet F; Navas JM NanoImpact; 2023 Jan; 29():100447. PubMed ID: 36563784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]