BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33588001)

  • 1. Frontoparietal Beta Amplitude Modulation and its Interareal Cross-frequency Coupling in Visual Working Memory.
    Liang WK; Tseng P; Yeh JR; Huang NE; Juan CH
    Neuroscience; 2021 Apr; 460():69-87. PubMed ID: 33588001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention.
    Palva S; Kulashekhar S; Hämäläinen M; Palva JM
    J Neurosci; 2011 Mar; 31(13):5013-25. PubMed ID: 21451039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal synchrony reveals working memory networks and predicts individual memory capacity.
    Palva JM; Monto S; Kulashekhar S; Palva S
    Proc Natl Acad Sci U S A; 2010 Apr; 107(16):7580-5. PubMed ID: 20368447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity.
    Kawasaki M; Yamaguchi Y
    Soc Cogn Affect Neurosci; 2013 Jun; 8(5):523-30. PubMed ID: 22349800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory.
    Tseng P; Iu KC; Juan CH
    Sci Rep; 2018 Jan; 8(1):349. PubMed ID: 29321584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontoparietal theta tACS nonselectively enhances encoding, maintenance, and retrieval stages in visuospatial working memory.
    Sahu PP; Tseng P
    Neurosci Res; 2021 Nov; 172():41-50. PubMed ID: 33992662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory.
    Fukuda K; Mance I; Vogel EK
    J Neurosci; 2015 Oct; 35(41):14009-16. PubMed ID: 26468201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex.
    Zhu R; Luo Y; Wang Z; You X
    Brain Cogn; 2020 Nov; 145():105630. PubMed ID: 33091807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma Oscillations Underlie the Maintenance of Feature-Specific Information and the Contents of Visual Working Memory.
    Honkanen R; Rouhinen S; Wang SH; Palva JM; Palva S
    Cereb Cortex; 2015 Oct; 25(10):3788-801. PubMed ID: 25405942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal codes of visual working memory in the human cerebral cortex: Brain rhythms associated with high memory capacity.
    Noguchi Y; Kakigi R
    Neuroimage; 2020 Nov; 222():117294. PubMed ID: 32835818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced and Evoked Human Electrophysiological Correlates of Visual Working Memory Set-Size Effects at Encoding.
    Gurariy G; Killebrew KW; Berryhill ME; Caplovitz GP
    PLoS One; 2016; 11(11):e0167022. PubMed ID: 27902738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventral fronto-parietal contributions to the disruption of visual working memory storage.
    Hakun JG; Ravizza SM
    Neuroimage; 2016 Jan; 124(Pt A):783-793. PubMed ID: 26436710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional dissociation of anterior cingulate cortex and intraparietal sulcus in visual working memory.
    Duma GM; Mento G; Cutini S; Sessa P; Baillet S; Brigadoi S; Dell'Acqua R
    Cortex; 2019 Dec; 121():277-291. PubMed ID: 31669977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The association between working memory precision and the nonlinear dynamics of frontal and parieto-occipital EEG activity.
    Chang WS; Liang WK; Li DH; Muggleton NG; Balachandran P; Huang NE; Juan CH
    Sci Rep; 2023 Aug; 13(1):14252. PubMed ID: 37653059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of maintaining generated images in visual working memory.
    Ewerdwalbesloh JA; Palva S; Rösler F; Khader PH
    Hum Brain Mapp; 2016 Dec; 37(12):4349-4362. PubMed ID: 27411499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory Control over Representational States in Working Memory.
    de Vries IEJ; Slagter HA; Olivers CNL
    Trends Cogn Sci; 2020 Feb; 24(2):150-162. PubMed ID: 31791896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual Working Memory Enhances the Neural Response to Matching Visual Input.
    Gayet S; Guggenmos M; Christophel TB; Haynes JD; Paffen CLE; Van der Stigchel S; Sterzer P
    J Neurosci; 2017 Jul; 37(28):6638-6647. PubMed ID: 28592696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared resources between visual attention and visual working memory are allocated through rhythmic sampling.
    Balestrieri E; Ronconi L; Melcher D
    Eur J Neurosci; 2022 Jun; 55(11-12):3040-3053. PubMed ID: 33942394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.
    Balaban H; Luria R
    J Neurosci; 2017 Feb; 37(5):1225-1239. PubMed ID: 28011745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.