BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33588015)

  • 1. Genetic changes associated with tigecycline resistance in Staphylococcus aureus in vitro-selected mutants belonging to different lineages.
    Herrera M; Gregorio SD; Haim MS; Posse G; Mollerach M; Di Conza J
    Int J Antimicrob Agents; 2021 Apr; 57(4):106304. PubMed ID: 33588015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance in In Vitro Selected Tigecycline-Resistant Methicillin-Resistant Staphylococcus aureus Sequence Type 5 Is Driven by Mutations in mepR and mepA Genes.
    Dabul ANG; Avaca-Crusca JS; Van Tyne D; Gilmore MS; Camargo ILBC
    Microb Drug Resist; 2018 Jun; 24(5):519-526. PubMed ID: 29039719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the MepRAB efflux system contribute to the in vitro development of tigecycline resistance in Staphylococcus aureus.
    Fang R; Sun Y; Dai W; Zheng X; Tian X; Zhang X; Wang C; Cao J; Zhou T
    J Glob Antimicrob Resist; 2020 Sep; 22():631-636. PubMed ID: 32590185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations at the Ribosomal S10 Gene in Clinical Strains of Staphylococcus aureus with Reduced Susceptibility to Tigecycline.
    Argudín MA; Roisin S; Dodémont M; Nonhoff C; Deplano A; Denis O
    Antimicrob Agents Chemother; 2018 Jan; 62(1):. PubMed ID: 29084741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tigecycline Resistance-Associated Mutations in the MepA Efflux Pump in Staphylococcus aureus.
    Huang H; Wan P; Luo X; Lu Y; Li X; Xiong W; Zeng Z
    Microbiol Spectr; 2023 Aug; 11(4):e0063423. PubMed ID: 37432114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline.
    McAleese F; Petersen P; Ruzin A; Dunman PM; Murphy E; Projan SJ; Bradford PA
    Antimicrob Agents Chemother; 2005 May; 49(5):1865-71. PubMed ID: 15855508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular mechanisms of allosteric mutations impairing MepR repressor function in multidrug-resistant strains of Staphylococcus aureus.
    Birukou I; Tonthat NK; Seo SM; Schindler BD; Kaatz GW; Brennan RG
    mBio; 2013 Aug; 4(5):e00528-13. PubMed ID: 23982071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efflux-mediated bis-indole resistance in Staphylococcus aureus reveals differential substrate specificities for MepA and MepR.
    Opperman TJ; Williams JD; Houseweart C; Panchal RG; Bavari S; Peet NP; Moir DT; Bowlin TL
    Bioorg Med Chem; 2010 Mar; 18(6):2123-2130. PubMed ID: 20188576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA.
    Kumaraswami M; Schuman JT; Seo SM; Kaatz GW; Brennan RG
    Nucleic Acids Res; 2009 Mar; 37(4):1211-24. PubMed ID: 19129225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional consequences of substitution mutations in MepR, a repressor of the Staphylococcus aureus MepA multidrug efflux pump gene.
    Schindler BD; Seo SM; Jacinto PL; Kumaraswami M; Birukou I; Brennan RG; Kaatz GW
    J Bacteriol; 2013 Aug; 195(16):3651-62. PubMed ID: 23749979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First description of rpsJ and mepA mutations associated with tigecycline resistance in Staphylococcus aureus isolated from a cystic fibrosis patient during antibiotic therapy.
    Haim MS; Di Gregorio S; Galanternik L; Lubovich S; Vázquez M; Bharat A; Zaheer R; Golding GR; Graham M; Van Domselaar G; Cardona ST; Mollerach M
    Int J Antimicrob Agents; 2017 Dec; 50(6):739-741. PubMed ID: 29038088
    [No Abstract]   [Full Text] [Related]  

  • 12. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus.
    Schindler BD; Seo SM; Birukou I; Brennan RG; Kaatz GW
    J Bacteriol; 2015 Mar; 197(6):1104-14. PubMed ID: 25583977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eravacycline susceptibility was impacted by genetic mutation of 30S ribosome subunits, and branched-chain amino acid transport system II carrier protein, Na/Pi cotransporter family protein in Staphylococcus aureus.
    Wang Z; Lin Z; Bai B; Xu G; Li P; Yu Z; Deng Q; Shang Y; Zheng J
    BMC Microbiol; 2020 Jul; 20(1):189. PubMed ID: 32611319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein.
    Kaatz GW; DeMarco CE; Seo SM
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1276-81. PubMed ID: 16569840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Tet(L) Efflux Pump Variants Conferring Resistance to Tigecycline and Eravacycline in Staphylococcus Spp.
    Wang N; Li D; Schwarz S; Qin S; Yao H; Du XD
    Microbiol Spectr; 2021 Dec; 9(3):e0131021. PubMed ID: 34878306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro selection of Staphylococcus aureus mutants resistant to tigecycline with intermediate susceptibility to vancomycin.
    Herrera M; Di Gregorio S; Fernandez S; Posse G; Mollerach M; Di Conza J
    Ann Clin Microbiol Antimicrob; 2016 Mar; 15():15. PubMed ID: 26956508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of
    Chiu SK; Huang LY; Chen H; Tsai YK; Liou CH; Lin JC; Siu LK; Chang FY; Yeh KM
    Antimicrob Agents Chemother; 2017 Aug; 61(8):. PubMed ID: 28533243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissemination of fusidic acid resistance among Staphylococcus aureus clinical isolates.
    Yu F; Liu Y; Lu C; Lv J; Qi X; Ding Y; Li D; Huang X; Hu L; Wang L
    BMC Microbiol; 2015 Oct; 15():210. PubMed ID: 26463589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the molecular basis of antimicrobial resistance in Staphylococcus aureus from the Democratic Republic of the Congo using whole genome sequencing.
    Phaku P; Lebughe M; Strauß L; Peters G; Herrmann M; Mumba D; Mellmann A; Muyembe-Tamfum JJ; Schaumburg F
    Clin Microbiol Infect; 2016 Jul; 22(7):644.e1-5. PubMed ID: 27102139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Tigecycline Resistance Among Tigecycline Non-susceptible
    Moghimi M; Haeili M; Mohajjel Shoja H
    Front Microbiol; 2021; 12():702006. PubMed ID: 34421858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.