BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33588081)

  • 1. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep Learning: Development and Preclinical Validation.
    Davids J; Makariou SG; Ashrafian H; Darzi A; Marcus HJ; Giannarou S
    World Neurosurg; 2021 May; 149():e669-e686. PubMed ID: 33588081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsurgical Tool Detection and Characterization in Intra-operative Neurosurgical Videos.
    Ramesh A; Beniwal M; Uppar AM; V V; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2676-2681. PubMed ID: 34891803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based video-analysis of instrument motion in microvascular anastomosis training.
    Sugiyama T; Sugimori H; Tang M; Ito Y; Gekka M; Uchino H; Ito M; Ogasawara K; Fujimura M
    Acta Neurochir (Wien); 2024 Jan; 166(1):6. PubMed ID: 38214753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer Assisted Objective Assessment of Micro-Neurosurgical Skills From Intraoperative Videos.
    Deepika P; Deepesh KVV; Vadali PS; Rao M; Vazhayil V; Uppar AM
    IEEE Open J Eng Med Biol; 2023; 4():11-20. PubMed ID: 37057038
    [No Abstract]   [Full Text] [Related]  

  • 5. Assessing Microneurosurgical Skill with Medico-Engineering Technology.
    Harada K; Morita A; Minakawa Y; Baek YM; Sora S; Sugita N; Kimura T; Tanikawa R; Ishikawa T; Mitsuishi M
    World Neurosurg; 2015 Oct; 84(4):964-71. PubMed ID: 26028599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality Assurance During Brain Aneurysm Microsurgery-Operative Error Teaching.
    Oliveira MM; Ferrarez CE; Lovato R; Costa PV; Malheiros JA; Avellar L; Granja M; Sauvageau E; Machado C; Hanel R
    World Neurosurg; 2019 Oct; 130():e112-e116. PubMed ID: 31176838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Microsurgical Tool Segmentation and Characterization in Intra-Operative Neurosurgical Videos.
    Deepika P; Udupa K; Beniwal M; Uppar AM; V V; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2110-2114. PubMed ID: 36086279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying objective metrics to neurosurgical skill development with simulation and spaced repetition learning.
    Robertson FC; Stapleton CJ; Coumans JCE; Nicolosi F; Vooijs M; Blitz S; Guerrini F; Spena G; Giussani C; Zoia C; Nahed BV
    J Neurosurg; 2023 Oct; 139(4):1092-1100. PubMed ID: 36905658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing residents' operative skills for external ventricular drain placement and shunt surgery in pediatric neurosurgery.
    J Neurosurg Pediatr; 2017 Apr; 19(4):377-383. PubMed ID: 28128705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurosurgical skills analysis by machine learning models: systematic review.
    Titov O; Bykanov A; Pitskhelauri D
    Neurosurg Rev; 2023 May; 46(1):121. PubMed ID: 37191734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine.
    Mirchi N; Bissonnette V; Yilmaz R; Ledwos N; Winkler-Schwartz A; Del Maestro RF
    PLoS One; 2020; 15(2):e0229596. PubMed ID: 32106247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulator and 2 tools: Validation of performance measures from a novel neurosurgery simulation model using the current Standards framework.
    Rooney DM; Tai BL; Sagher O; Shih AJ; Wilkinson DA; Savastano LE
    Surgery; 2016 Sep; 160(3):571-9. PubMed ID: 27241118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurosurgical Skills Assessment: Measuring Technical Proficiency in Neurosurgery Residents Through Intraoperative Video Evaluations.
    Sarkiss CA; Philemond S; Lee J; Sobotka S; Holloway TD; Moore MM; Costa AB; Gordon EL; Bederson JB
    World Neurosurg; 2016 May; 89():1-8. PubMed ID: 26724633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study.
    Tang M; Sugiyama T; Takahari R; Sugimori H; Yoshimura T; Ogasawara K; Kudo K; Fujimura M
    Neurosurg Rev; 2024 May; 47(1):200. PubMed ID: 38722409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Deep Learning Models for Identifying Surgical Actions and Measuring Performance.
    Khalid S; Goldenberg M; Grantcharov T; Taati B; Rudzicz F
    JAMA Netw Open; 2020 Mar; 3(3):e201664. PubMed ID: 32227178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Video-based surgical skill assessment using 3DĀ convolutional neural networks.
    Funke I; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1217-1225. PubMed ID: 31104257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated tool detection with deep learning for monitoring kinematics and eye-hand coordination in microsurgery.
    Koskinen J; Torkamani-Azar M; Hussein A; Huotarinen A; Bednarik R
    Comput Biol Med; 2022 Feb; 141():105121. PubMed ID: 34968859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic microsurgery: validating an assessment tool and plotting the learning curve.
    Alrasheed T; Liu J; Hanasono MM; Butler CE; Selber JC
    Plast Reconstr Surg; 2014 Oct; 134(4):794-803. PubMed ID: 25357037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of microsurgery competency-where are we now?
    Ramachandran S; Ghanem AM; Myers SR
    Microsurgery; 2013 Jul; 33(5):406-15. PubMed ID: 23712917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.
    AlZhrani G; Alotaibi F; Azarnoush H; Winkler-Schwartz A; Sabbagh A; Bajunaid K; Lajoie SP; Del Maestro RF
    J Surg Educ; 2015; 72(4):685-96. PubMed ID: 25687956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.