BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33588083)

  • 41. The effects of temperature and body size on immunological development and responsiveness in juvenile shortnose sturgeon (Acipenser brevirostrum).
    Gradil AM; Wright GM; Speare DJ; Wadowska DW; Purcell S; Fast MD
    Fish Shellfish Immunol; 2014 Oct; 40(2):545-55. PubMed ID: 25130144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hypothermal stress induced differential expression profiles of the immune response gene, warm-temperature-acclimation associated 65-kDa protein (Wap65), in the liver of fresh water and seawater milkfish, Chanos chanos.
    Chang CH; Lin JY; Lo WY; Lee TH
    Fish Shellfish Immunol; 2017 Nov; 70():174-184. PubMed ID: 28882792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization and expression analysis of g- and c-type lysozymes in Dabry's sturgeon (Acipenser dabryanus).
    Zhang S; Xu Q; Boscari E; Du H; Qi Z; Li Y; Huang J; Di J; Yue H; Li C; Congiu L; Wei Q
    Fish Shellfish Immunol; 2018 May; 76():260-265. PubMed ID: 29526699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feeding Strategies for Adapting Lake Sturgeon (
    Lee S; Zhai S; Deng DF; Li Y; Blaufuss PC; Eggold BT; Binkowski F
    Animals (Basel); 2022 Nov; 12(22):. PubMed ID: 36428356
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different response of Acipenser gueldenstaedtii CRP/SAP and SAA to bacterial challenge and chronic thermal stress sheds light on the innate immune system of sturgeons.
    Aversa-Marnai M; Castellano M; Quartiani I; Conijesky D; Perretta A; Villarino A; Silva-Álvarez V; Ferreira AM
    Fish Shellfish Immunol; 2022 Feb; 121():404-417. PubMed ID: 34971737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of methods to quantify metabolic rate and its relationship with activity in larval lake sturgeon Acipenser fulvescens.
    Yoon GR; Bjornson F; Deslauriers D; Anderson WG
    J Fish Biol; 2021 Jul; 99(1):73-86. PubMed ID: 33583016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Divergent migration within lake sturgeon (Acipenser fulvescens) populations: Multiple distinct patterns exist across an unrestricted migration corridor.
    Kessel ST; Hondorp DW; Holbrook CM; Boase JC; Chiotti JA; Thomas MV; Wills TC; Roseman EF; Drouin R; Krueger CC
    J Anim Ecol; 2018 Jan; 87(1):259-273. PubMed ID: 29055094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of 14-3-3β/α gene expression in response to salinity, thermal, and bacterial stresses in Siberian sturgeon (Acipenser baeri).
    Wang X; Ma G; Zhu H
    Fish Physiol Biochem; 2020 Apr; 46(2):519-531. PubMed ID: 31848829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring epidermal mucus protease activity as an indicator of stress in Atlantic sturgeon (Acipenser oxyrinchus oxyrhinchus).
    Murphy AE; Stokesbury MJW; Easy RH
    J Fish Biol; 2020 Nov; 97(5):1354-1362. PubMed ID: 32789856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptome analysis of Aeromonas hydrophila infected hybrid sturgeon (Huso dauricus×Acipenser schrenckii).
    Jiang N; Fan Y; Zhou Y; Wang W; Ma J; Zeng L
    Sci Rep; 2018 Dec; 8(1):17925. PubMed ID: 30560883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. De novo annotation of the immune-enriched transcriptome provides insights into immune system genes of Chinese sturgeon (Acipenser sinensis).
    Zhu R; Du HJ; Li SY; Li YD; Ni H; Yu XJ; Yang YY; Fan YD; Jiang N; Zeng LB; Wang XG
    Fish Shellfish Immunol; 2016 Aug; 55():699-716. PubMed ID: 27368537
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitigation of lampricide toxicity to juvenile lake sturgeon: the importance of water alkalinity and life stage.
    Hepditch SLJ; Tessier LR; Wilson JM; Birceanu O; O'Connor LM; Wilkie MP
    Conserv Physiol; 2019; 7(1):coz089. PubMed ID: 31832194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The lampricide 3-trifluoromethyl-4-nitrophenol causes temporary metabolic disturbances in juvenile lake sturgeon (
    Ionescu RA; Hepditch SLJ; Wilkie MP
    Conserv Physiol; 2021; 9(1):coab069. PubMed ID: 34512991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs.
    Williams PN; Collier CT; Carroll JA; Welsh TH; Laurenz JC
    Domest Anim Endocrinol; 2009 Oct; 37(3):139-47. PubMed ID: 19523782
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular characterization and expression analysis of TLR1 and TLR4 from the endangered fish Dabry's sturgeon (Acipenser dabryanus).
    Han P; Wang S; Zhang Q; Zhang S; Shao R; Xu W; Zhang W; Xu Q; Wei Q; Qi Z
    Dev Comp Immunol; 2018 Sep; 86():180-188. PubMed ID: 29753770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptome sequencing of hybrid bester sturgeon: Responses to poly (I:C) in the context of comparative immunogenomics.
    Mugue N; Terekhanova N; Afanasyev S; Krasnov A
    Fish Shellfish Immunol; 2019 Oct; 93():888-894. PubMed ID: 31425830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding olfactory and behavioural responses to dietary cues in age-1 lake sturgeon Acipenser fulvescens.
    Edwards T; Bouyoucos IA; Hasler CT; Fry M; Anderson WG
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Feb; 288():111560. PubMed ID: 38056556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and sexually dimorphic expression of vasa isoforms in Dabry's sturgeon (Acipenser dabryanus), and functional analysis of vasa 3'-untranslated region.
    Ye H; Yue HM; Yang XG; Li CJ; Wei QW
    Cell Tissue Res; 2016 Oct; 366(1):203-18. PubMed ID: 27184950
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aquatic insects differentially affect lake sturgeon larval phenotypes and egg surface microbial communities.
    Walquist RW; Scribner KT; Waraniak J; Bauman JM; Marsh TL; Kanefsky J; Larson DL
    PLoS One; 2022; 17(11):e0277336. PubMed ID: 36409729
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The potential sensing molecules and signal cascades for protecting teleost fishes against lipopolysaccharide.
    Li Y; Xia P; Wu J; Huang A; Bu G; Meng F; Kong F; Cao X; Han X; Yu G; Pan X; Yang S; Zeng X; Du X
    Fish Shellfish Immunol; 2020 Feb; 97():235-247. PubMed ID: 31863902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.