These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33588143)

  • 21. Study on coagulation property of metal-polysilicate coagulants in low turbidity water treatment.
    Yang HY; Cui FY; Zhao QL; Ma C
    J Zhejiang Univ Sci; 2004 Jun; 5(6):721-6. PubMed ID: 15101109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an integrating coagulation and reverse osmosis system to treat highly turbid water using synthesized coagulants.
    Solanki YS; Agarwal M; Gupta AB
    Water Sci Technol; 2022 Jan; 85(2):562-577. PubMed ID: 35100139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of chitosan as a coagulant in the pre-treatment of turbid sea water.
    Altaher H
    J Hazard Mater; 2012 Sep; 233-234():97-102. PubMed ID: 22819482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coagulation/flocculation process with polyaluminum chloride for the remediation of oil sands process-affected water: Performance and mechanism study.
    Wang C; Alpatova A; McPhedran KN; Gamal El-Din M
    J Environ Manage; 2015 Sep; 160():254-62. PubMed ID: 26119332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Ion-Exchange Coagulants Remove More Low Molecular Weight Organics than Traditional Coagulants.
    Zhao H; Wang L; Hanigan D; Westerhoff P; Ni J
    Environ Sci Technol; 2016 Apr; 50(7):3897-904. PubMed ID: 26974542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation and performance of three Kenaf coagulation products under different operating conditions.
    Okoro BU; Sharifi S; Jesson M; Bridgeman J; Moruzzi R
    Water Res; 2021 Jan; 188():116517. PubMed ID: 33075601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein fractionation of Hibiscus cannabinus (kenaf) seeds, its characterization, and potential use for water treatment.
    Okoro BU; Sharifi S; Jesson M; Bridgeman J
    Water Environ Res; 2022 Oct; 94(11):e10805. PubMed ID: 36369990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influential factors of formation kinetics of flocs produced by water treatment coagulants.
    Wu C; Wang L; Hu B; Ye J
    J Environ Sci (China); 2013 May; 25(5):1015-22. PubMed ID: 24218833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment.
    Nkurunziza T; Nduwayezu JB; Banadda EN; Nhapi I
    Water Sci Technol; 2009; 59(8):1551-8. PubMed ID: 19403968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous modelling of coagulant recovery and reuse by response surface methodology.
    Ahmad T; Ahmad K; Alam M
    J Environ Manage; 2021 May; 285():112139. PubMed ID: 33621888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of iron ore slimes from a highly turbid water by DAF.
    Faustino LM; Braga AS; Sacchi GD; Whitaker W; Reali MAP; Leal Filho LS; Daniel LA
    Environ Technol; 2019 Nov; 40(26):3444-3455. PubMed ID: 29781404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eco-Friendly Coagulant versus Industrially Used Coagulants: Identification of Their Coagulation Performance, Mechanism and Optimization in Water Treatment Process.
    Khairul Zaman N; Rohani R; Izni Yusoff I; Kamsol MA; Basiron SA; Abd Rashid AI
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process.
    Marques RO; Ferreira Filho SS
    Environ Technol; 2017 Apr; 38(7):901-910. PubMed ID: 27666085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The removal of kaolinite suspensions by acid-soluble and water-soluble chitosans.
    Chung YC; Wu LC; Chen CY
    Environ Technol; 2013; 34(1-4):283-8. PubMed ID: 23530342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of titanium salts compared to conventional FeCl
    Chekli L; Corjon E; Tabatabai SAA; Naidu G; Tamburic B; Park SH; Shon HK
    J Environ Manage; 2017 Oct; 201():28-36. PubMed ID: 28636970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts.
    Zhao YX; Gao BY; Shon HK; Cao BC; Kim JH
    J Hazard Mater; 2011 Jan; 185(2-3):1536-42. PubMed ID: 21075521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous optimization of multiple performance characteristics in coagulation-flocculation process for Indian paper industry wastewater.
    Saraswathi R; Saseetharan MK
    Water Sci Technol; 2012; 66(6):1231-8. PubMed ID: 22828300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of enteromorpha polysaccharides as coagulant aid in the simultaneous removal of CuO nanoparticles and Cu
    Luo Y; Gao B; Yue Q; Li R
    Chemosphere; 2018 Aug; 204():492-500. PubMed ID: 29679870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water.
    Tang Y; Hu X; Cai J; Xi Z; Yang H
    Chemosphere; 2020 Nov; 259():127464. PubMed ID: 32593001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation.
    Jang M; Lee HJ; Shim Y
    Environ Technol; 2010 Apr; 31(4):423-32. PubMed ID: 20450117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.