These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33588304)

  • 1. Programmable tools for targeted analysis of epigenetic DNA modifications.
    Buchmuller B; Jung A; Muñoz-López Á; Summerer D
    Curr Opin Chem Biol; 2021 Aug; 63():1-10. PubMed ID: 33588304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors.
    Buchmuller B; Muñoz-López Á; Gieß M; Summerer D
    Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.
    Rathi P; Maurer S; Kubik G; Summerer D
    J Am Chem Soc; 2016 Aug; 138(31):9910-8. PubMed ID: 27429302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer Receptors for Nucleotide-Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging.
    Muñoz-López Á; Buchmuller B; Wolffgramm J; Jung A; Hussong M; Kanne J; Schweiger MR; Summerer D
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8927-8931. PubMed ID: 32167219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable Protein-DNA Cross-Linking for the Direct Capture and Quantification of 5-Formylcytosine.
    Gieß M; Muñoz-López Á; Buchmuller B; Kubik G; Summerer D
    J Am Chem Soc; 2019 Jun; 141(24):9453-9457. PubMed ID: 31180648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA.
    Hardwick JS; Lane AN; Brown T
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29369386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering Epigenetic Cytosine Modifications by Direct Molecular Recognition.
    Kubik G; Summerer D
    ACS Chem Biol; 2015 Jul; 10(7):1580-9. PubMed ID: 25897631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.
    Kubik G; Summerer D
    Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Tools with Fluorescence Switches for Verifying Epigenetic Modifications.
    Hori Y; Kikuchi K
    Acc Chem Res; 2019 Oct; 52(10):2849-2857. PubMed ID: 31577127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of Oxidized 5-Methylcytosine Derivatives in DNA by Natural and Engineered Protein Scaffolds.
    Muñoz-López Á; Summerer D
    Chem Rec; 2018 Jan; 18(1):105-116. PubMed ID: 29251421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioorthogonal labeling of 5-hydroxymethylcytosine in genomic DNA and diazirine-based DNA photo-cross-linking probes.
    Song CX; He C
    Acc Chem Res; 2011 Sep; 44(9):709-17. PubMed ID: 21539303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunochemical Detection of Modified Species of Cytosine in Plant Tissues.
    Viejo M; Yakovlev I; Fossdal CG
    Methods Mol Biol; 2021; 2198():209-216. PubMed ID: 32822034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the structural and dynamic consequences of DNA epigenetic modifications: computational insights into cytosine methylation and hydroxymethylation.
    Carvalho AT; Gouveia L; Kanna CR; Wärmländer SK; Platts JA; Kamerlin SC
    Epigenetics; 2014 Dec; 9(12):1604-12. PubMed ID: 25625845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats.
    Gieß M; Witte A; Jasper J; Koch O; Summerer D
    J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA.
    Wang Y; Zhang X; Zou G; Peng S; Liu C; Zhou X
    Acc Chem Res; 2019 Apr; 52(4):1016-1024. PubMed ID: 30666870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-methylcytosine-sensitive variants of Thermococcus kodakaraensis DNA polymerase.
    Huber C; von Watzdorf J; Marx A
    Nucleic Acids Res; 2016 Nov; 44(20):9881-9890. PubMed ID: 27651460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TET proteins: on the frenetic hunt for new cytosine modifications.
    Delatte B; Fuks F
    Brief Funct Genomics; 2013 May; 12(3):191-204. PubMed ID: 23625996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pairwise Proximity-Differentiated Visualization of Single-Cell DNA Epigenetic Marks.
    Xue J; Chen F; Su L; Cao X; Bai M; Zhao Y; Fan C; Zhao Y
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3428-3432. PubMed ID: 33135308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Site Discrimination of Cytosine, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Target DNA Using Anthracene-Tagged Fluorescent Probes.
    Duprey JL; Bullen GA; Zhao ZY; Bassani DM; Peacock AF; Wilkie J; Tucker JH
    ACS Chem Biol; 2016 Mar; 11(3):717-21. PubMed ID: 26580817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective recognition of
    Rathi P; Maurer S; Summerer D
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.