These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33588361)
1. Rapid analysis of wheat flour by different handheld near-infrared spectrometers: A discussion of calibration model maintenance and performance comparison. Chen X; Siesler HW; Yan H Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119504. PubMed ID: 33588361 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of a pharmaceutical formulation: Performance comparison of different handheld near-infrared spectrometers. Yan H; Siesler HW J Pharm Biomed Anal; 2018 Oct; 160():179-186. PubMed ID: 30096648 [TBL] [Abstract][Full Text] [Related]
3. Quantification of gluten in wheat flour by FT-Raman spectroscopy. Czaja T; Mazurek S; Szostak R Food Chem; 2016 Nov; 211():560-3. PubMed ID: 27283667 [TBL] [Abstract][Full Text] [Related]
4. Rapid determination of total protein and wet gluten in commercial wheat flour using siSVR-NIR. Chen J; Zhu S; Zhao G Food Chem; 2017 Apr; 221():1939-1946. PubMed ID: 27979183 [TBL] [Abstract][Full Text] [Related]
5. Challenging handheld NIR spectrometers with moisture analysis in plant matrices: Performance of PLSR vs. GPR vs. ANN modelling. Mayr S; Beć KB; Grabska J; Wiedemair V; Pürgy V; Popp MA; Bonn GK; Huck CW Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119342. PubMed ID: 33360568 [TBL] [Abstract][Full Text] [Related]
6. [Research on the quantitative determination of lime in wheat flour by near-infrared spectroscopy]. Wang D; Ma ZH; Pan LG; Han P; Zhao L; Wang JH Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):69-73. PubMed ID: 23586227 [TBL] [Abstract][Full Text] [Related]
7. [Detection of benzoyl peroxide in wheat flour by NIR diffuse reflectance spectroscopy technique]. Zhang ZY; Li G; Liu HX; Lin L; Zhang BJ; Wu XR Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Dec; 31(12):3260-3. PubMed ID: 22295772 [TBL] [Abstract][Full Text] [Related]
8. Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics. Tian W; Chen G; Zhang G; Wang D; Tilley M; Li Y Food Chem; 2021 May; 344():128633. PubMed ID: 33223296 [TBL] [Abstract][Full Text] [Related]
9. Identification Performance of Different Types of Handheld Near-Infrared (NIR) Spectrometers for the Recycling of Polymer Commodities. Yan H; Siesler HW Appl Spectrosc; 2018 Sep; 72(9):1362-1370. PubMed ID: 29855195 [TBL] [Abstract][Full Text] [Related]
10. [Fast determination of mineral elements in wheat flour by near-infrared spectroscopy]. Gao H; Wang G; Wang Z Wei Sheng Yan Jiu; 2021 May; 50(3):495-500. PubMed ID: 34074375 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Talc Content in Wheat Flour Based on a Near-Infrared Spectroscopy Technique. Liu YI; Sun L; Ran Z; Pan X; Zhou S; Liu S J Food Prot; 2019 Oct; 82(10):1655-1662. PubMed ID: 31526188 [TBL] [Abstract][Full Text] [Related]
12. Near-infrared spectroscopy in quality control of Piper nigrum: A comparison of performance of benchtop and handheld spectrometers. Mayr S; Beć KB; Grabska J; Schneckenreiter E; Huck CW Talanta; 2021 Feb; 223(Pt 2):121809. PubMed ID: 33298289 [TBL] [Abstract][Full Text] [Related]
13. Investigation on the Integration of Low-Cost NIR Spectrometers in Mill Flour Industries for Protein, Moisture and Ash Content Estimation. Boglou V; Verginadis D; Karlis A Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896569 [TBL] [Abstract][Full Text] [Related]
14. Feasibility study on quantification and authentication of the cassava starch content in wheat flour for bread-making using NIR spectroscopy and digital images. Duarte ESA; de Almeida VE; da Costa GB; de Araújo MCU; Véras G; Diniz PHGD; Fernandes DDS Food Chem; 2022 Jan; 368():130843. PubMed ID: 34418692 [TBL] [Abstract][Full Text] [Related]
15. Effect of long-term storage conditions on wheat flour and bread baking properties. Lancelot E; Fontaine J; Grua-Priol J; Le-Bail A Food Chem; 2021 Jun; 346():128902. PubMed ID: 33482530 [TBL] [Abstract][Full Text] [Related]
16. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer. Hoffmann U; Pfeifer F; Hsuing C; Siesler HW Appl Spectrosc; 2016 May; 70(5):852-60. PubMed ID: 27170780 [TBL] [Abstract][Full Text] [Related]
17. Application of near-infrared handheld spectrometers to predict semolina quality. Cecchini C; Antonucci F; Costa C; Marti A; Menesatti P J Sci Food Agric; 2021 Jan; 101(1):151-157. PubMed ID: 32613617 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Benchtop Fourier-Transform (FT) and Portable Grating Scanning Spectrometers for Determination of Total Soluble Solid Contents in Single Grape Berry (Vitis vinifera L.) and Calibration Transfer. Xiao H; Sun K; Sun Y; Wei K; Tu K; Pan L Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29165336 [TBL] [Abstract][Full Text] [Related]
19. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression. Delwiche SR; Reeves JB Appl Spectrosc; 2010 Jan; 64(1):73-82. PubMed ID: 20132601 [TBL] [Abstract][Full Text] [Related]
20. [Current status and prospects of portable NIR spectrometer]. Yu XY; Lu QP; Gao HZ; Peng ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):2983-8. PubMed ID: 24555365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]