BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33589336)

  • 21. A cell-based model system links chromothripsis with hyperploidy.
    Mardin BR; Drainas AP; Waszak SM; Weischenfeldt J; Isokane M; Stütz AM; Raeder B; Efthymiopoulos T; Buccitelli C; Segura-Wang M; Northcott P; Pfister SM; Lichter P; Ellenberg J; Korbel JO
    Mol Syst Biol; 2015 Sep; 11(9):828. PubMed ID: 26415501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability.
    Cleal K; Baird DM
    Trends Genet; 2020 May; 36(5):347-359. PubMed ID: 32294415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Role for Retrotransposons in Chromothripsis.
    Hancks DC
    Methods Mol Biol; 2018; 1769():169-181. PubMed ID: 29564824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.
    Mazzagatti A; Engel JL; Ly P
    Mol Cell; 2024 Jan; 84(1):55-69. PubMed ID: 38029753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution.
    Hanscom T; McVey M
    Cells; 2020 Jul; 9(7):. PubMed ID: 32660124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements.
    Krupina K; Goginashvili A; Cleveland DW
    Nat Rev Genet; 2024 Mar; 25(3):196-210. PubMed ID: 37938738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis.
    Terradas M; Martín M; Genescà A
    Arch Toxicol; 2016 Nov; 90(11):2657-2667. PubMed ID: 27542123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of chromosome rearrangement arising from single-strand breaks.
    Kot P; Yasuhara T; Shibata A; Hirakawa M; Abe Y; Yamauchi M; Matsuda N
    Biochem Biophys Res Commun; 2021 Oct; 572():191-196. PubMed ID: 34375929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromothripsis: how does such a catastrophic event impact human reproduction?
    Pellestor F
    Hum Reprod; 2014 Mar; 29(3):388-93. PubMed ID: 24452388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis.
    Mladenov E; Saha J; Iliakis G
    Adv Exp Med Biol; 2018; 1044():149-168. PubMed ID: 29956296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities.
    Ejaz U; Dou Z; Yao PY; Wang Z; Liu X; Yao X
    J Mol Cell Biol; 2024 May; ():. PubMed ID: 38710586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prevalence and clinical implications of chromothripsis in cancer genomes.
    Kloosterman WP; Koster J; Molenaar JJ
    Curr Opin Oncol; 2014 Jan; 26(1):64-72. PubMed ID: 24305569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution.
    Leibowitz ML; Zhang CZ; Pellman D
    Annu Rev Genet; 2015; 49():183-211. PubMed ID: 26442848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline.
    Fukami M; Shima H; Suzuki E; Ogata T; Matsubara K; Kamimaki T
    Clin Genet; 2017 May; 91(5):653-660. PubMed ID: 27888607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA double-strand break repair pathway choice and cancer.
    Aparicio T; Baer R; Gautier J
    DNA Repair (Amst); 2014 Jul; 19():169-75. PubMed ID: 24746645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromothripsis in Human Breast Cancer.
    Bolkestein M; Wong JKL; Thewes V; Körber V; Hlevnjak M; Elgaafary S; Schulze M; Kommoss FKF; Sinn HP; Anzeneder T; Hirsch S; Devens F; Schröter P; Höfer T; Schneeweiss A; Lichter P; Zapatka M; Ernst A
    Cancer Res; 2020 Nov; 80(22):4918-4931. PubMed ID: 32973084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA repair gene--XRCC1 in relation to genome instability and role in colorectal carcinogenesis.
    Nissar S; Sameer AS; Rasool R; Rashid F
    Oncol Res Treat; 2014; 37(7-8):418-22. PubMed ID: 25138303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromoanagenesis, the mechanisms of a genomic chaos.
    Pellestor F; Gaillard JB; Schneider A; Puechberty J; Gatinois V
    Semin Cell Dev Biol; 2022 Mar; 123():90-99. PubMed ID: 33608210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromothripsis - Extensive Chromosomal Rearrangements and Their Significance in Cancer.
    Závacká K; Plevová K; Jarošová M; Pospíšilová Š
    Klin Onkol; 2019; 32(2):101-108. PubMed ID: 30995849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromosome-breakage genomic instability and chromothripsis in breast cancer.
    Przybytkowski E; Lenkiewicz E; Barrett MT; Klein K; Nabavi S; Greenwood CM; Basik M
    BMC Genomics; 2014 Jul; 15(1):579. PubMed ID: 25011954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.