These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 33589424)

  • 1. Therapeutically Increasing MHC-I Expression Potentiates Immune Checkpoint Blockade.
    Gu SS; Zhang W; Wang X; Jiang P; Traugh N; Li Z; Meyer C; Stewig B; Xie Y; Bu X; Manos MP; Font-Tello A; Gjini E; Lako A; Lim K; Conway J; Tewari AK; Zeng Z; Sahu AD; Tokheim C; Weirather JL; Fu J; Zhang Y; Kroger B; Liang JH; Cejas P; Freeman GJ; Rodig S; Long HW; Gewurz BE; Hodi FS; Brown M; Liu XS
    Cancer Discov; 2021 Jun; 11(6):1524-1541. PubMed ID: 33589424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.
    Minnar CM; Chariou PL; Horn LA; Hicks KC; Palena C; Schlom J; Gameiro SR
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy.
    Ye D; Zhou S; Dai X; Xu H; Tang Q; Huang H; Bi F
    Biochim Biophys Acta Rev Cancer; 2024 Sep; 1879(5):189161. PubMed ID: 39096977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation.
    Zhou Y; Bastian IN; Long MD; Dow M; Li W; Liu T; Ngu RK; Antonucci L; Huang JY; Phung QT; Zhao XH; Banerjee S; Lin XJ; Wang H; Dang B; Choi S; Karin D; Su H; Ellisman MH; Jamieson C; Bosenberg M; Cheng Z; Haybaeck J; Kenner L; Fisch KM; Bourgon R; Hernandez G; Lill JR; Liu S; Carter H; Mellman I; Karin M; Shalapour S
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33602823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARIH1 activates STING-mediated T-cell activation and sensitizes tumors to immune checkpoint blockade.
    Liu X; Cen X; Wu R; Chen Z; Xie Y; Wang F; Shan B; Zeng L; Zhou J; Xie B; Cai Y; Huang J; Liang Y; Wu Y; Zhang C; Wang D; Xia H
    Nat Commun; 2023 Jul; 14(1):4066. PubMed ID: 37429863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome Deconvolution Reveals Absence of Cancer Cell Expression Signature in Immune Checkpoint Blockade Response.
    Guo YA; Kulshrestha T; Chang MM; Kassam I; Revkov E; Rizzetto S; Tan AC; Tan DSW; Tan IB; Skanderup AJ
    Cancer Res Commun; 2024 Jun; 4(6):1581-1596. PubMed ID: 38722600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt Inhibition Sensitizes PD-L1 Blockade Therapy by Overcoming Bone Marrow-Derived Myofibroblasts-Mediated Immune Resistance in Tumors.
    Huang T; Li F; Cheng X; Wang J; Zhang W; Zhang B; Tang Y; Li Q; Zhou C; Tu S
    Front Immunol; 2021; 12():619209. PubMed ID: 33790893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of histamine receptor H1 augments immune checkpoint therapy by enhancing MHC-I expression in pancreatic cancer cells.
    Zhong P; Nakata K; Oyama K; Higashijima N; Sagara A; Date S; Luo H; Hayashi M; Kubo A; Wu C; He S; Yamamoto T; Koikawa K; Iwamoto C; Abe T; Ikenaga N; Ohuchida K; Morisaki T; Oda Y; Kuba K; Nakamura M
    J Exp Clin Cancer Res; 2024 May; 43(1):138. PubMed ID: 38715057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.
    Budimir N; Thomas GD; Dolina JS; Salek-Ardakani S
    Cancer Immunol Res; 2022 Feb; 10(2):146-153. PubMed ID: 34937730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to Immune Checkpoint Blockade: IFNγ or MHC-I?
    Haugh A; Daud A
    Cancer Immunol Res; 2023 Jul; 11(7):864. PubMed ID: 37262325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Lysine-Specific Demethylase 1 Rescues Major Histocompatibility Complex Class I Antigen Presentation and Overcomes Programmed Death-Ligand 1 Blockade Resistance in SCLC.
    Nguyen EM; Taniguchi H; Chan JM; Zhan YA; Chen X; Qiu J; de Stanchina E; Allaj V; Shah NS; Uddin F; Manoj P; Liu M; Cai SF; Levine R; Quintanal-Villalonga Á; Sen T; Chow A; Rudin CM
    J Thorac Oncol; 2022 Aug; 17(8):1014-1031. PubMed ID: 35691495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer.
    Huang K; Hu M; Chen J; Wei J; Qin J; Lin S; Du H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics.
    Han X; Li H; Zhou D; Chen Z; Gu Z
    Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer.
    Negrao MV; Skoulidis F; Montesion M; Schulze K; Bara I; Shen V; Xu H; Hu S; Sui D; Elamin YY; Le X; Goldberg ME; Murugesan K; Wu CJ; Zhang J; Barreto DS; Robichaux JP; Reuben A; Cascone T; Gay CM; Mitchell KG; Hong L; Rinsurongkawong W; Roth JA; Swisher SG; Lee J; Tsao A; Papadimitrakopoulou V; Gibbons DL; Glisson BS; Singal G; Miller VA; Alexander B; Frampton G; Albacker LA; Shames D; Zhang J; Heymach JV
    J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34376553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade.
    Liu Y; Cai J; Liu W; Lin Y; Guo L; Liu X; Qin Z; Xu C; Zhang Y; Su X; Deng K; Yan G; Liang J
    Cell Death Dis; 2020 Dec; 11(12):1062. PubMed ID: 33311488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant cytoplasmic expression of UHRF1 restrains the MHC-I-mediated anti-tumor immune response.
    Tan L; Yin T; Xiang H; Wang L; Mudgal P; Chen J; Ding Y; Wang G; Lim BJW; Huang Y; Huang D; Liang Y; Alexander PB; Xiang K; Wang E; Yan C; Ma Z; Tan M; Li QJ; Wang XF
    Nat Commun; 2024 Oct; 15(1):8569. PubMed ID: 39362877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.