BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33589494)

  • 1. Identification of additional outer segment targeting signals in zebrafish rod opsin.
    Fang X; Peden AA; van Eeden FJM; Malicki JJ
    J Cell Sci; 2021 Mar; 134(6):. PubMed ID: 33589494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport.
    Boubakri M; Chaya T; Hirata H; Kajimura N; Kuwahara R; Ueno A; Malicki J; Furukawa T; Omori Y
    J Biol Chem; 2016 Nov; 291(47):24465-24474. PubMed ID: 27681595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis.
    Tam BM; Moritz OL; Hurd LB; Papermaster DS
    J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TMEM216 Deletion Causes Mislocalization of Cone Opsin and Rhodopsin and Photoreceptor Degeneration in Zebrafish.
    Liu Y; Cao S; Yu M; Hu H
    Invest Ophthalmol Vis Sci; 2020 Jul; 61(8):24. PubMed ID: 32687549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas.
    Papermaster DS; Schneider BG; Besharse JC
    Invest Ophthalmol Vis Sci; 1985 Oct; 26(10):1386-404. PubMed ID: 2931395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
    Wolfrum U; Schmitt A
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):95-107. PubMed ID: 10891855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
    Nemet I; Ropelewski P; Imanishi Y
    Prog Mol Biol Transl Sci; 2015; 132():39-71. PubMed ID: 26055054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments.
    Verma DK; Malhotra H; Woellert T; Calvert PD
    J Biol Chem; 2023 Dec; 299(12):105412. PubMed ID: 37918805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An outer segment localization signal at the C terminus of the photoreceptor-specific retinol dehydrogenase.
    Luo W; Marsh-Armstrong N; Rattner A; Nathans J
    J Neurosci; 2004 Mar; 24(11):2623-32. PubMed ID: 15028754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactose promotes organized photoreceptor outer segment assembly and preserves expression of photoreceptor proteins in retinal degeneration.
    Jablonski MM; Wohabrebbi A; Ervin CS
    Mol Vis; 1999 Aug; 5():16. PubMed ID: 10449803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish.
    Raghupathy RK; Zhang X; Liu F; Alhasani RH; Biswas L; Akhtar S; Pan L; Moens CB; Li W; Liu M; Kennedy BN; Shu X
    Sci Rep; 2017 Dec; 7(1):16881. PubMed ID: 29203866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoplasmic tail of rhodopsin triggers rapid rod degeneration in kinesin-2 mutants.
    Feng D; Chen Z; Yang K; Miao S; Xu B; Kang Y; Xie H; Zhao C
    J Biol Chem; 2017 Oct; 292(42):17375-17386. PubMed ID: 28855254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2.
    Trivedi D; Colin E; Louie CM; Williams DS
    J Neurosci; 2012 Aug; 32(31):10587-93. PubMed ID: 22855808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins.
    Vihtelic TS; Doro CJ; Hyde DR
    Vis Neurosci; 1999; 16(3):571-85. PubMed ID: 10349976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors.
    Papermaster DS; Schneider BG; DeFoe D; Besharse JC
    J Histochem Cytochem; 1986 Jan; 34(1):5-16. PubMed ID: 2934469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of the transmembrane protein Prom1b in zebrafish disrupts outer-segment morphogenesis and causes photoreceptor degeneration.
    Lu Z; Hu X; Reilly J; Jia D; Liu F; Yu S; Liu X; Xie S; Qu Z; Qin Y; Huang Y; Lv Y; Li J; Gao P; Wong F; Shu X; Tang Z; Liu M
    J Biol Chem; 2019 Sep; 294(38):13953-13963. PubMed ID: 31362982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo.
    Wunderlich KA; Wolfrum U
    Methods Mol Biol; 2016; 1454():97-106. PubMed ID: 27514918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors.
    Ojeda Naharros I; Gesemann M; Mateos JM; Barmettler G; Forbes A; Ziegler U; Neuhauss SCF; Bachmann-Gagescu R
    PLoS Genet; 2017 Dec; 13(12):e1007150. PubMed ID: 29281629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.