These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3358954)

  • 1. Is the normal heart a periodic oscillator?
    Babloyantz A; Destexhe A
    Biol Cybern; 1988; 58(3):203-11. PubMed ID: 3358954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic--chaotic and periodic properties of heart rate and arterial pressure fluctuations and their mediation in piglets.
    Zwiener U; Hoyer D; Bauer R; Lüthke B; Walter B; Schmidt K; Hallmeyer S; Kratzsch B; Eiselt M
    Cardiovasc Res; 1996 Mar; 31(3):455-65. PubMed ID: 8681333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of phase transitions in heart period dynamics.
    Bettermann H; Van Leeuwen P
    Biol Cybern; 1998 Jan; 78(1):63-70. PubMed ID: 9485586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear dynamics and chaotic indices in heart rate variability of normal subjects and heart-transplanted patients.
    Guzzetti S; Signorini MG; Cogliati C; Mezzetti S; Porta A; Cerutti S; Malliani A
    Cardiovasc Res; 1996 Mar; 31(3):441-6. PubMed ID: 8681331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approach to studies on ECG dynamics: extraction and analyses of QRS complex irregularity time series.
    Zhang XS; Zhu YS; Zhang XJ
    Med Biol Eng Comput; 1997 Sep; 35(5):467-73. PubMed ID: 9374049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the analytic techniques of nonlinear dynamics distinguish periodic, random and chaotic signals?
    Denton TA; Diamond GA
    Comput Biol Med; 1991; 21(4):243-63. PubMed ID: 1764933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.
    Dimitriev DA; Saperova EV; Dimitriev AD
    PLoS One; 2016; 11(1):e0146131. PubMed ID: 26807793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chaotic component of human heart rate variability shows a circadian periodicity as documented by the correlation dimension of the time-qualified sinusal R-R intervals.
    Curione M; Bernardini F; Cedrone L; Proietti E; Danese C; Pellegrino AM; De Rosa R; Di Siena G; Vacca K; Cammarota C; Cugini P
    Clin Ter; 1998; 149(6):409-12. PubMed ID: 10100401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological variation of glucose and insulin includes a deterministic chaotic component.
    Kroll MH
    Biosystems; 1999 Jun; 50(3):189-201. PubMed ID: 10400269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation dimension and the largest Lyapunov exponent characterization of RR interval.
    Lu HW; Chen YZ
    Space Med Med Eng (Beijing); 2003 Dec; 16(6):396-9. PubMed ID: 15008187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias.
    Guevara MR; Glass L
    J Math Biol; 1982; 14(1):1-23. PubMed ID: 7077182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No evidence of chaos in the heart rate variability of normal and cardiac transplant human subjects.
    Costa M; Pimentel IR; Santiago T; Sarreira P; Melo J; Ducla-Soares E
    J Cardiovasc Electrophysiol; 1999 Oct; 10(10):1350-7. PubMed ID: 10515559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for chaotic behavior in driven ventricles.
    Savino GV; Romanelli L; González DL; Piro O; Valentinuzzi ME
    Biophys J; 1989 Aug; 56(2):273-80. PubMed ID: 2505870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random effects inducing heart pathological dynamics: An approach based on mathematical models.
    Cheffer A; Savi MA
    Biosystems; 2020 Oct; 196():104177. PubMed ID: 32562623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Connection of the tangents of the regression slope of the heart rate graph with linear and nonlinear dynamics in stationary short-time series].
    Mashin VA
    Biofizika; 2006; 51(3):524-33. PubMed ID: 16808354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear analysis of continuous ECG during sleep II. Dynamical measures.
    Fell J; Mann K; Röschke J; Gopinathan MS
    Biol Cybern; 2000 Jun; 82(6):485-91. PubMed ID: 10879432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition.
    Salisbury JI; Sun Y
    Ann Biomed Eng; 2004 Oct; 32(10):1348-54. PubMed ID: 15535053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of evidence for low-dimensional chaos in heart rate variability.
    Kanters JK; Holstein-Rathlou NH; Agner E
    J Cardiovasc Electrophysiol; 1994 Jul; 5(7):591-601. PubMed ID: 7987529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistical analysis of sequences of cardiac interbeat intervals does not support the chaos hypothesis.
    Le Pape G; Giacomini H; Swynghedauw B; Mansier P
    J Theor Biol; 1997 Jan; 184(2):123-31. PubMed ID: 9059592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation properties and complexity of perioperative RR-interval dynamics in coronary artery bypass surgery patients.
    Laitio TT; Huikuri HV; Kentala ES; Mäkikallio TH; Jalonen JR; Helenius H; Sariola-Heinonen K; Yli-Mäyry S; Scheinin H
    Anesthesiology; 2000 Jul; 93(1):69-80. PubMed ID: 10861148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.