These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 33589635)
1. Fast and precise single-cell data analysis using a hierarchical autoencoder. Tran D; Nguyen H; Tran B; La Vecchia C; Luu HN; Nguyen T Nat Commun; 2021 Feb; 12(1):1029. PubMed ID: 33589635 [TBL] [Abstract][Full Text] [Related]
2. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Gan Y; Huang X; Zou G; Zhou S; Guan J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334 [TBL] [Abstract][Full Text] [Related]
3. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis. Wang HY; Zhao JP; Su YS; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401 [TBL] [Abstract][Full Text] [Related]
4. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. Hu Q; Greene CS Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075 [TBL] [Abstract][Full Text] [Related]
5. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder. Zhao J; Wang N; Wang H; Zheng C; Su Y Front Genet; 2021; 12():733906. PubMed ID: 34512734 [TBL] [Abstract][Full Text] [Related]
6. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data. Kinalis S; Nielsen FC; Winther O; Bagger FO BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861 [TBL] [Abstract][Full Text] [Related]
7. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
8. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
9. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder. Jiang J; Xu J; Liu Y; Song B; Guo X; Zeng X; Zou Q Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37088976 [TBL] [Abstract][Full Text] [Related]
10. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis. Lin E; Mukherjee S; Kannan S BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701 [TBL] [Abstract][Full Text] [Related]
11. VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder. Wang D; Gu J Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):320-331. PubMed ID: 30576740 [TBL] [Abstract][Full Text] [Related]
12. T-distributed Stochastic Neighbor Network for unsupervised representation learning. Wang Z; Xie J; Nie F; Wang R; Jia Y; Liu S Neural Netw; 2024 Nov; 179():106520. PubMed ID: 39024709 [TBL] [Abstract][Full Text] [Related]
13. Topological Methods for Visualization and Analysis of High Dimensional Single-Cell RNA Sequencing Data. Wang T; Johnson T; Zhang J; Huang K Pac Symp Biocomput; 2019; 24():350-361. PubMed ID: 30963074 [TBL] [Abstract][Full Text] [Related]
14. Shallow Sparsely-Connected Autoencoders for Gene Set Projection. Gold MP; LeNail A; Fraenkel E Pac Symp Biocomput; 2019; 24():374-385. PubMed ID: 30963076 [TBL] [Abstract][Full Text] [Related]
15. A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder. Luo Z; Xu C; Zhang Z; Jin W Sci Rep; 2021 Oct; 11(1):20028. PubMed ID: 34625592 [TBL] [Abstract][Full Text] [Related]
17. Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder. Garrido Q; Damrich S; Jäger A; Cerletti D; Claassen M; Najman L; Hamprecht FA Bioinformatics; 2022 Jun; 38(Suppl 1):i316-i324. PubMed ID: 35758814 [TBL] [Abstract][Full Text] [Related]
18. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data. Wang HY; Zhao JP; Zheng CH; Su YS Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592058 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies. Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541 [TBL] [Abstract][Full Text] [Related]
20. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]