BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33589748)

  • 81. Amount of bone marrow blasts is strongly correlated to NPM1 and FLT3-ITD mutation rate in AML with normal karyotype.
    Haferlach T; Bacher U; Alpermann T; Haferlach C; Kern W; Schnittger S
    Leuk Res; 2012 Jan; 36(1):51-8. PubMed ID: 21621842
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation.
    Fouladi F; Jehn LB; Metzelder SK; Hub F; Henkenius K; Burchert A; Brendel C; Stiewe T; Neubauer A
    Leuk Lymphoma; 2015; 56(9):2690-8. PubMed ID: 25665465
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples.
    Cloos J; Goemans BF; Hess CJ; van Oostveen JW; Waisfisz Q; Corthals S; de Lange D; Boeckx N; Hählen K; Reinhardt D; Creutzig U; Schuurhuis GJ; Zwaan ChM; Kaspers GJ
    Leukemia; 2006 Jul; 20(7):1217-20. PubMed ID: 16642044
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Activating internal tandem duplication mutations of the fms-like tyrosine kinase-3 (FLT3-ITD) at complete response and relapse in patients with acute myeloid leukemia.
    Nazha A; Cortes J; Faderl S; Pierce S; Daver N; Kadia T; Borthakur G; Luthra R; Kantarjian H; Ravandi F
    Haematologica; 2012 Aug; 97(8):1242-5. PubMed ID: 22532519
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The IL-3, IL-5, and GM-CSF common receptor beta chain mediates oncogenic activity of FLT3-ITD-positive AML.
    Charlet A; Kappenstein M; Keye P; Kläsener K; Endres C; Poggio T; Gorantla SP; Kreutmair S; Sänger J; Illert AL; Miething C; Reth M; Duyster J; Rummelt C; von Bubnoff N
    Leukemia; 2022 Mar; 36(3):701-711. PubMed ID: 34750506
    [TBL] [Abstract][Full Text] [Related]  

  • 86. DOCK2 interacts with FLT3 and modulates the survival of FLT3-expressing leukemia cells.
    Wu M; Hamaker M; Li L; Small D; Duffield AS
    Leukemia; 2017 Mar; 31(3):688-696. PubMed ID: 27748370
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
    Godfrey R; Arora D; Bauer R; Stopp S; Müller JP; Heinrich T; Böhmer SA; Dagnell M; Schnetzke U; Scholl S; Östman A; Böhmer FD
    Blood; 2012 May; 119(19):4499-511. PubMed ID: 22438257
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to
    Porter SN; Cluster AS; Yang W; Busken KA; Patel RM; Ryoo J; Magee JA
    Elife; 2016 Nov; 5():. PubMed ID: 27879203
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Prognostic implications of NPM1 mutations and FLT3 internal tandem duplications in Egyptian patients with cytogenetically normal acute myeloid leukemia.
    Shamaa S; Laimon N; Aladle DA; Azmy E; Elghannam DM; Salem DA; Taalab MM
    Hematology; 2014 Jan; 19(1):22-30. PubMed ID: 23540998
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Medium-sized FLT3 internal tandem duplications confer worse prognosis than short and long duplications in a non-elderly acute myeloid leukemia cohort.
    Koszarska M; Meggyesi N; Bors A; Batai A; Csacsovszki O; Lehoczky E; Adam E; Kozma A; Lovas N; Sipos A; Krahling T; Dolgos J; Remenyi P; Fekete S; Masszi T; Tordai A; Andrikovics H
    Leuk Lymphoma; 2014 Jul; 55(7):1510-7. PubMed ID: 24090502
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Pim-1 kinase phosphorylates and stabilizes 130 kDa FLT3 and promotes aberrant STAT5 signaling in acute myeloid leukemia with FLT3 internal tandem duplication.
    Natarajan K; Xie Y; Burcu M; Linn DE; Qiu Y; Baer MR
    PLoS One; 2013; 8(9):e74653. PubMed ID: 24040307
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Serine Biosynthesis Is a Metabolic Vulnerability in FLT3-ITD-Driven Acute Myeloid Leukemia.
    Bjelosevic S; Gruber E; Newbold A; Shembrey C; Devlin JR; Hogg SJ; Kats L; Todorovski I; Fan Z; Abrehart TC; Pomilio G; Wei A; Gregory GP; Vervoort SJ; Brown KK; Johnstone RW
    Cancer Discov; 2021 Jun; 11(6):1582-1599. PubMed ID: 33436370
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by Up-regulating RUNX1 expression in hematopoietic cells.
    Hirade T; Abe M; Onishi C; Taketani T; Yamaguchi S; Fukuda S
    Int J Hematol; 2016 Jan; 103(1):95-106. PubMed ID: 26590920
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Melatonin enhances sorafenib-induced cytotoxicity in FLT3-ITD acute myeloid leukemia cells by redox modification.
    Tian T; Li J; Li Y; Lu YX; Tang YL; Wang H; Zheng F; Shi D; Long Q; Chen M; Garcia-Manero G; Hu Y; Qin L; Deng W
    Theranostics; 2019; 9(13):3768-3779. PubMed ID: 31281512
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Homoharringtonine synergizes with quizartinib in FLT3-ITD acute myeloid leukemia by targeting FLT3-AKT-c-Myc pathway.
    Wang F; Huang J; Guo T; Zheng Y; Zhang L; Zhang D; Wang F; Naren D; Cui Y; Liu X; Qu Y; Luo H; Yang Y; Wei H; Guo Y
    Biochem Pharmacol; 2021 Jun; 188():114538. PubMed ID: 33831397
    [TBL] [Abstract][Full Text] [Related]  

  • 96. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1.
    Downie Ruiz Velasco A; Parsons AL; Heatley MC; Martin ARG; Smart AD; Shah N; Jopling CL
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38884273
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin.
    Schmalbrock LK; Dolnik A; Cocciardi S; Sträng E; Theis F; Jahn N; Panina E; Blätte TJ; Herzig J; Skambraks S; Rücker FG; Gaidzik VI; Paschka P; Fiedler W; Salih HR; Wulf G; Schroeder T; Lübbert M; Schlenk RF; Thol F; Heuser M; Larson RA; Ganser A; Stunnenberg HG; Minucci S; Stone RM; Bloomfield CD; Döhner H; Döhner K; Bullinger L
    Blood; 2021 Jun; 137(22):3093-3104. PubMed ID: 33598693
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biological and therapeutic implications of a unique subtype of NPM1 mutated AML.
    Mer AS; Heath EM; Madani Tonekaboni SA; Dogan-Artun N; Nair SK; Murison A; Garcia-Prat L; Shlush L; Hurren R; Voisin V; Bader GD; Nislow C; Rantalainen M; Lehmann S; Gower M; Guidos CJ; Lupien M; Dick JE; Minden MD; Schimmer AD; Haibe-Kains B
    Nat Commun; 2021 Feb; 12(1):1054. PubMed ID: 33594052
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Eprenetapopt Plus Azacitidine in
    Cluzeau T; Sebert M; Rahmé R; Cuzzubbo S; Lehmann-Che J; Madelaine I; Peterlin P; Bève B; Attalah H; Chermat F; Miekoutima E; Rauzy OB; Recher C; Stamatoullas A; Willems L; Raffoux E; Berthon C; Quesnel B; Loschi M; Carpentier AF; Sallman DA; Komrokji R; Walter-Petrich A; Chevret S; Ades L; Fenaux P
    J Clin Oncol; 2021 May; 39(14):1575-1583. PubMed ID: 33600210
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Two decades of targeted therapies in acute myeloid leukemia.
    Cucchi DGJ; Polak TB; Ossenkoppele GJ; Uyl-De Groot CA; Cloos J; Zweegman S; Janssen JJWM
    Leukemia; 2021 Mar; 35(3):651-660. PubMed ID: 33589753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.