These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33590098)

  • 1. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.
    Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF
    Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence.
    Samolygo A; Athukoralage JS; Graham S; White MF
    Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA
    Jia N; Jones R; Yang G; Ouerfelli O; Patel DJ
    Mol Cell; 2019 Sep; 75(5):944-956.e6. PubMed ID: 31326273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate.
    McMahon SA; Zhu W; Graham S; Rambo R; White MF; Gloster TM
    Nat Commun; 2020 Jan; 11(1):500. PubMed ID: 31980625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage.
    Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF
    Elife; 2020 Jun; 9():. PubMed ID: 32597755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic properties of CARF-domain proteins in
    Ding J; Schuergers N; Baehre H; Wilde A
    Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Csm6 ribonuclease by cyclic nucleotide binding: in an emergency, twist to open.
    McQuarrie S; Athukoralage JS; McMahon SA; Graham S; Ackermann K; Bode BE; White MF; Gloster TM
    Nucleic Acids Res; 2023 Oct; 51(19):10590-10605. PubMed ID: 37747760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate selectivity and catalytic activation of the type III CRISPR ancillary nuclease Can2.
    Jungfer K; Sigg A; Jinek M
    Nucleic Acids Res; 2024 Jan; 52(1):462-473. PubMed ID: 38033326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems.
    Xia P; Dutta A; Gupta K; Batish M; Parashar V
    J Biol Chem; 2022 Feb; 298(2):101591. PubMed ID: 35038453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence.
    Grüschow S; Athukoralage JS; Graham S; Hoogeboom T; White MF
    Nucleic Acids Res; 2019 Sep; 47(17):9259-9270. PubMed ID: 31392987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate.
    Du L; Zhu Q; Lin Z
    EMBO J; 2024 Jan; 43(2):304-315. PubMed ID: 38177499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
    Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M
    Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6.
    Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M
    Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system.
    Zhang D; Du L; Gao H; Yuan C; Lin Z
    Nucleic Acids Res; 2024 Aug; 52(14):8419-8430. PubMed ID: 38967023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Card1 nuclease provides defence during type III CRISPR immunity.
    Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA
    Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence.
    Athukoralage JS; White MF
    RNA; 2021 May; 27(8):855-67. PubMed ID: 33986148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator.
    Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF
    J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA
    Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM
    J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.
    Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G
    Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.