These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33590098)

  • 41. Regulation of cyclic oligoadenylate synthesis by the
    Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA
    RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference.
    You L; Ma J; Wang J; Artamonova D; Wang M; Liu L; Xiang H; Severinov K; Zhang X; Wang Y
    Cell; 2019 Jan; 176(1-2):239-253.e16. PubMed ID: 30503210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6.
    Niewoehner O; Jinek M
    RNA; 2016 Mar; 22(3):318-29. PubMed ID: 26763118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex.
    Zhu X; Ye K
    Nucleic Acids Res; 2015 Jan; 43(2):1257-67. PubMed ID: 25541196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
    East-Seletsky A; O'Connell MR; Knight SC; Burstein D; Cate JH; Tjian R; Doudna JA
    Nature; 2016 Oct; 538(7624):270-273. PubMed ID: 27669025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Type III CRISPR-Cas: beyond the Cas10 effector complex.
    Stella G; Marraffini L
    Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate.
    Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF
    Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.
    Koonin EV; Makarova KS
    ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular mechanisms of III-B CRISPR-Cas systems in archaea.
    Zhang Y; Lin J; Feng M; She Q
    Emerg Top Life Sci; 2018 Dec; 2(4):483-491. PubMed ID: 33525825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity.
    Lau RK; Ye Q; Birkholz EA; Berg KR; Patel L; Mathews IT; Watrous JD; Ego K; Whiteley AT; Lowey B; Mekalanos JJ; Kranzusch PJ; Jain M; Pogliano J; Corbett KD
    Mol Cell; 2020 Feb; 77(4):723-733.e6. PubMed ID: 31932164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.
    East-Seletsky A; O'Connell MR; Burstein D; Knott GJ; Doudna JA
    Mol Cell; 2017 May; 66(3):373-383.e3. PubMed ID: 28475872
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recognition of a pseudo-symmetric RNA tetranucleotide by Csx3, a new member of the CRISPR associated Rossmann fold superfamily.
    Topuzlu E; Lawrence CM
    RNA Biol; 2016; 13(2):254-7. PubMed ID: 26727591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural basis of CRISPR-Cas Type III prokaryotic defence systems.
    Molina R; Sofos N; Montoya G
    Curr Opin Struct Biol; 2020 Dec; 65():119-129. PubMed ID: 32712502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d.
    Zhang B; Ye Y; Ye W; Perčulija V; Jiang H; Chen Y; Li Y; Chen J; Lin J; Wang S; Chen Q; Han YS; Ouyang S
    Nat Commun; 2019 Jun; 10(1):2544. PubMed ID: 31186424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.
    Yan WX; Chong S; Zhang H; Makarova KS; Koonin EV; Cheng DR; Scott DA
    Mol Cell; 2018 Apr; 70(2):327-339.e5. PubMed ID: 29551514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular basis of cyclic tetra-oligoadenylate processing by small standalone CRISPR-Cas ring nucleases.
    Molina R; Garcia-Martin R; López-Méndez B; Jensen ALG; Ciges-Tomas JR; Marchena-Hurtado J; Stella S; Montoya G
    Nucleic Acids Res; 2022 Oct; 50(19):11199-11213. PubMed ID: 36271789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.