BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 33590396)

  • 1. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65935-65944. PubMed ID: 34327638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete.
    Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete.
    Al-Shamiri AK; Yuan TF; Kim AJH
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques.
    Nafees A; Amin MN; Khan K; Nazir K; Ali M; Javed MF; Aslam F; Musarat MA; Vatin NI
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based prediction of compressive strength of eco-friendly geopolymer concrete.
    Tanyildizi H
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41246-41266. PubMed ID: 38844634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the Compressive Strength of the Cement-Fly Ash-Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method.
    Huang J; Sabri MMS; Ulrikh DV; Ahmad M; Alsaffar KAM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concrete Strength Prediction Using Different Machine Learning Processes: Effect of Slag, Fly Ash and Superplasticizer.
    Qi C; Huang B; Wu M; Wang K; Yang S; Li G
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on factors affecting early strength of high-performance concrete by Gaussian Process Regression.
    Ly HB; Nguyen TA; Pham BT
    PLoS One; 2022; 17(1):e0262930. PubMed ID: 35085343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm.
    Ahmad A; Farooq F; Niewiadomski P; Ostrowski K; Akbar A; Aslam F; Alyousef R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33567526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms.
    Rathakrishnan V; Bt Beddu S; Ahmed AN
    Sci Rep; 2022 Jun; 12(1):9539. PubMed ID: 35680937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Soft-Computing Methods to Evaluate the Compressive Strength of Self-Compacting Concrete.
    Amin MN; Al-Hashem MN; Ahmad A; Khan K; Ahmad W; Qadir MG; Imran M; Al-Ahmad QMS
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Prediction Model to Predict the Compressive Strength of Eco-Friendly Concrete Using Multivariate Polynomial Regression Combined with Stepwise Method.
    Imran H; Al-Abdaly NM; Shamsa MH; Shatnawi A; Ibrahim M; Ostrowski KA
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning.
    Wang M; Kang J; Liu W; Su J; Li M
    PLoS One; 2022; 17(12):e0279293. PubMed ID: 36574382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete.
    Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.