BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33590486)

  • 1. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision.
    Elsharawy KA; Gerds TA; Rakha EA; Dalton LW
    Histopathology; 2021 Aug; 79(2):187-199. PubMed ID: 33590486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence.
    Zhao Y; Pan Z; Namburi S; Pattison A; Posner A; Balachander S; Paisie CA; Reddi HV; Rueter J; Gill AJ; Fox S; Raghav KPS; Flynn WF; Tothill RW; Li S; Karuturi RKM; George J
    EBioMedicine; 2020 Nov; 61():103030. PubMed ID: 33039710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of an Artificial Intelligence-Powered Platform for Prostate Cancer Grading and Quantification.
    Huang W; Randhawa R; Jain P; Iczkowski KA; Hu R; Hubbard S; Eickhoff J; Basu H; Roy R
    JAMA Netw Open; 2021 Nov; 4(11):e2132554. PubMed ID: 34730818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleolar-related protein Dyskerin pseudouridine synthase 1 (DKC1) predicts poor prognosis in breast cancer.
    Elsharawy KA; Mohammed OJ; Aleskandarany MA; Hyder A; El-Gammal HL; Abou-Dobara MI; Green AR; Dalton LW; Rakha EA
    Br J Cancer; 2020 Nov; 123(10):1543-1552. PubMed ID: 32868896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic significance of nucleolar assessment in invasive breast cancer.
    Elsharawy KA; Toss MS; Raafat S; Ball G; Green AR; Aleskandarany MA; Dalton LW; Rakha EA
    Histopathology; 2020 Apr; 76(5):671-684. PubMed ID: 31736094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer.
    McCaffrey C; Jahangir C; Murphy C; Burke C; Gallagher WM; Rahman A
    Expert Rev Mol Diagn; 2024 May; 24(5):363-377. PubMed ID: 38655907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Future of biomarker evaluation in the realm of artificial intelligence algorithms: application in improved therapeutic stratification of patients with breast and prostate cancer.
    Fitzgerald J; Higgins D; Mazo Vargas C; Watson W; Mooney C; Rahman A; Aspell N; Connolly A; Aura Gonzalez C; Gallagher W
    J Clin Pathol; 2021 Jul; 74(7):429-434. PubMed ID: 34117103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study.
    Ström P; Kartasalo K; Olsson H; Solorzano L; Delahunt B; Berney DM; Bostwick DG; Evans AJ; Grignon DJ; Humphrey PA; Iczkowski KA; Kench JG; Kristiansen G; van der Kwast TH; Leite KRM; McKenney JK; Oxley J; Pan CC; Samaratunga H; Srigley JR; Takahashi H; Tsuzuki T; Varma M; Zhou M; Lindberg J; Lindskog C; Ruusuvuori P; Wählby C; Grönberg H; Rantalainen M; Egevad L; Eklund M
    Lancet Oncol; 2020 Feb; 21(2):222-232. PubMed ID: 31926806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers.
    Romo-Bucheli D; Janowczyk A; Gilmore H; Romero E; Madabhushi A
    Cytometry A; 2017 Jun; 91(6):566-573. PubMed ID: 28192639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial image objects for classification of breast cancer biomarkers with transcriptome sequencing data and convolutional neural network algorithms.
    Chen X; Chen DG; Zhao Z; Balko JM; Chen J
    Breast Cancer Res; 2021 Oct; 23(1):96. PubMed ID: 34629099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer.
    Sharma A; Weitz P; Wang Y; Liu B; Vallon-Christersson J; Hartman J; Rantalainen M
    Breast Cancer Res; 2024 Jan; 26(1):17. PubMed ID: 38287342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images.
    Nir G; Karimi D; Goldenberg SL; Fazli L; Skinnider BF; Tavassoli P; Turbin D; Villamil CF; Wang G; Thompson DJS; Black PC; Salcudean SE
    JAMA Netw Open; 2019 Mar; 2(3):e190442. PubMed ID: 30848813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mathematics of erythema: Development of machine learning models for artificial intelligence assisted measurement and severity scoring of radiation induced dermatitis.
    Ranjan R; Partl R; Erhart R; Kurup N; Schnidar H
    Comput Biol Med; 2021 Dec; 139():104952. PubMed ID: 34739967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading.
    Egevad L; Swanberg D; Delahunt B; Ström P; Kartasalo K; Olsson H; Berney DM; Bostwick DG; Evans AJ; Humphrey PA; Iczkowski KA; Kench JG; Kristiansen G; Leite KRM; McKenney JK; Oxley J; Pan CC; Samaratunga H; Srigley JR; Takahashi H; Tsuzuki T; van der Kwast T; Varma M; Zhou M; Clements M; Eklund M
    Virchows Arch; 2020 Dec; 477(6):777-786. PubMed ID: 32542445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer.
    Amiri Souri E; Chenoweth A; Cheung A; Karagiannis SN; Tsoka S
    Br J Cancer; 2021 Aug; 125(5):748-758. PubMed ID: 34131308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prognostic significance of KN motif and ankyrin repeat domains 1 (KANK1) in invasive breast cancer.
    Kariri YA; Joseph C; Kurozumi S; Toss MS; Alsaleem M; Raafat S; Mongan NP; Aleskandarany MA; Green AR; Rakha EA
    Breast Cancer Res Treat; 2020 Jan; 179(2):349-357. PubMed ID: 31679074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence in digital breast pathology: Techniques and applications.
    Ibrahim A; Gamble P; Jaroensri R; Abdelsamea MM; Mermel CH; Chen PC; Rakha EA
    Breast; 2020 Feb; 49():267-273. PubMed ID: 31935669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images-Role of Multiscale Decision Aggregation and Data Augmentation.
    Karimi D; Nir G; Fazli L; Black PC; Goldenberg L; Salcudean SE
    IEEE J Biomed Health Inform; 2020 May; 24(5):1413-1426. PubMed ID: 31567104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study.
    Tolkach Y; Wolgast LM; Damanakis A; Pryalukhin A; Schallenberg S; Hulla W; Eich ML; Schroeder W; Mukhopadhyay A; Fuchs M; Klein S; Bruns C; Büttner R; Gebauer F; Schömig-Markiefka B; Quaas A
    Lancet Digit Health; 2023 May; 5(5):e265-e275. PubMed ID: 37100542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging.
    Ueyama H; Kato Y; Akazawa Y; Yatagai N; Komori H; Takeda T; Matsumoto K; Ueda K; Matsumoto K; Hojo M; Yao T; Nagahara A; Tada T
    J Gastroenterol Hepatol; 2021 Feb; 36(2):482-489. PubMed ID: 32681536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.