These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33590658)

  • 41. Micropatterning of hydrogels by soft embossing.
    Kobel S; Limacher M; Gobaa S; Laroche T; Lutolf MP
    Langmuir; 2009 Aug; 25(15):8774-9. PubMed ID: 19361170
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microtextured polydimethylsiloxane substrates for culturing mesenchymal stem cells.
    Peterson ET; Papautsky I
    Methods Mol Biol; 2006; 321():179-97. PubMed ID: 16508073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monocyte proliferation and differentiation to osteoclasts is affected by density of collagen covalently bound to a poly(dimethyl siloxane) culture surface.
    Shafieyan Y; Tiedemann K; Goulet A; Komarova S; Quinn TM
    J Biomed Mater Res A; 2012 Jun; 100(6):1573-81. PubMed ID: 22447405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Osteogenic differentiation on DLC-PDMS-h surface.
    Soininen A; Kaivosoja E; Sillat T; Virtanen S; Konttinen YT; Tiainen VM
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1462-72. PubMed ID: 24574187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inducement of a spontaneously wrinkled polydimethylsiloxane surface and its potential as a cell culture substrate.
    Kim DS; Lee HW; Lee JH; Kwon HG; Lee SW; Han SJ; Jeong OC
    Colloids Surf B Biointerfaces; 2018 Oct; 170():266-272. PubMed ID: 29935420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces.
    Mata A; Boehm C; Fleischman AJ; Muschler G; Roy S
    J Biomed Mater Res; 2002 Dec; 62(4):499-506. PubMed ID: 12221697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelial cell responses to micropillar substrates of varying dimensions and stiffness.
    Dickinson LE; Rand DR; Tsao J; Eberle W; Gerecht S
    J Biomed Mater Res A; 2012 Jun; 100(6):1457-66. PubMed ID: 22389314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Topography printing to locally control wettability.
    Zheng Z; Azzaroni O; Zhou F; Huck WT
    J Am Chem Soc; 2006 Jun; 128(24):7730-1. PubMed ID: 16771474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY; Liu T; Li WJ; Shi XH; Fan DL
    Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-step cell patterning on planar and complex curved surfaces by precision spraying of polymers.
    De Silva MN; Paulsen J; Renn MJ; Odde DJ
    Biotechnol Bioeng; 2006 Apr; 93(5):919-27. PubMed ID: 16358279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function.
    Toworfe GK; Composto RJ; Adams CS; Shapiro IM; Ducheyne P
    J Biomed Mater Res A; 2004 Dec; 71(3):449-61. PubMed ID: 15481053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hard top soft bottom microfluidic devices for cell culture and chemical analysis.
    Mehta G; Lee J; Cha W; Tung YC; Linderman JJ; Takayama S
    Anal Chem; 2009 May; 81(10):3714-22. PubMed ID: 19382754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog.
    Xue L; Sanz B; Luo A; Turner KT; Wang X; Tan D; Zhang R; Du H; Steinhart M; Mijangos C; Guttmann M; Kappl M; Del Campo A
    ACS Nano; 2017 Oct; 11(10):9711-9719. PubMed ID: 28885831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mass-producible nano-featured polystyrene surfaces for regulating the differentiation of human adipose-derived stem cells.
    Park KS; Cha KJ; Han IB; Shin DA; Cho DW; Lee SH; Kim DS
    Macromol Biosci; 2012 Nov; 12(11):1480-9. PubMed ID: 23042782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies.
    Kidambi S; Udpa N; Schroeder SA; Findlan R; Lee I; Chan C
    Tissue Eng; 2007 Aug; 13(8):2105-17. PubMed ID: 17518734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy.
    Razavi M; Thakor AS
    J Mater Sci Mater Med; 2018 May; 29(5):54. PubMed ID: 29725867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation.
    Lord MS; Modin C; Foss M; Duch M; Simmons A; Pedersen FS; Milthorpe BK; Besenbacher F
    Biomaterials; 2006 Sep; 27(26):4529-37. PubMed ID: 16716396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot embossing for micropatterned cell substrates.
    Charest JL; Bryant LE; Garcia AJ; King WP
    Biomaterials; 2004 Aug; 25(19):4767-75. PubMed ID: 15120523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced culturing of adipose derived mesenchymal stem cells on surface modified polystyrene Petri dishes fabricated by plasma enhanced chemical vapor deposition system.
    Lim H; Park Y; Jang S; Park H; Cho YK; Jung D
    J Biomed Mater Res B Appl Biomater; 2022 Feb; 110(2):358-366. PubMed ID: 34289238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.