These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 33590701)
1. Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes. Ou Q; Yang B; Zhang J; Liu D; Chen T; Wang X; Hao D; Lu Y; Huang J Small; 2021 Mar; 17(10):e2007241. PubMed ID: 33590701 [TBL] [Abstract][Full Text] [Related]
2. The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing. Liu D; Shi Q; Dai S; Huang J Small; 2020 Apr; 16(13):e1907472. PubMed ID: 32068955 [TBL] [Abstract][Full Text] [Related]
3. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing. Yu R; Li E; Wu X; Yan Y; He W; He L; Chen J; Chen H; Guo T ACS Appl Mater Interfaces; 2020 Apr; 12(13):15446-15455. PubMed ID: 32153175 [TBL] [Abstract][Full Text] [Related]
4. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Wu G; Feng P; Wan X; Zhu L; Shi Y; Wan Q Sci Rep; 2016 Mar; 6():23578. PubMed ID: 27008981 [TBL] [Abstract][Full Text] [Related]
5. Wood-Derived Nanopaper Dielectrics for Organic Synaptic Transistors. Dai S; Wang Y; Zhang J; Zhao Y; Xiao F; Liu D; Wang T; Huang J ACS Appl Mater Interfaces; 2018 Nov; 10(46):39983-39991. PubMed ID: 30383362 [TBL] [Abstract][Full Text] [Related]
6. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Wang Y; Huang W; Zhang Z; Fan L; Huang Q; Wang J; Zhang Y; Zhang M Nanoscale; 2021 Jul; 13(26):11360-11369. PubMed ID: 34096562 [TBL] [Abstract][Full Text] [Related]
7. Flexible Artificial Synapses with a Biocompatible Maltose-Ascorbic Acid Electrolyte Gate for Neuromorphic Computing. Qin W; Kang BH; Kim HJ ACS Appl Mater Interfaces; 2021 Jul; 13(29):34597-34604. PubMed ID: 34279076 [TBL] [Abstract][Full Text] [Related]
8. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. Wan H; Cao Y; Lo LW; Zhao J; Sepúlveda N; Wang C ACS Nano; 2020 Aug; 14(8):10402-10412. PubMed ID: 32678612 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired Multifunctional Organic Transistors Based on Natural Chlorophyll/Organic Semiconductors. Yang B; Lu Y; Jiang D; Li Z; Zeng Y; Zhang S; Ye Y; Liu Z; Ou Q; Wang Y; Dai S; Yi Y; Huang J Adv Mater; 2020 Jul; 32(28):e2001227. PubMed ID: 32500583 [TBL] [Abstract][Full Text] [Related]
10. Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness. Dai C; Huo C; Qi S; Dai M; Webster T; Xiao H Int J Nanomedicine; 2020; 15():8037-8043. PubMed ID: 33116516 [TBL] [Abstract][Full Text] [Related]
11. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems. Tanim MMH; Templin Z; Zhao F Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837935 [TBL] [Abstract][Full Text] [Related]
12. Deep Ultraviolet Light Stimulated Synaptic Transistors Based on Poly(3-hexylthiophene) Ultrathin Films. Jiang L; Xu C; Wu X; Zhao X; Zhang L; Zhang G; Wang X; Qiu L ACS Appl Mater Interfaces; 2022 Mar; 14(9):11718-11726. PubMed ID: 35213133 [TBL] [Abstract][Full Text] [Related]
13. Flexible Printed Ultraviolet-to-Near-Infrared Broadband Optoelectronic Carbon Nanotube Synaptic Transistors for Fast and Energy-Efficient Neuromorphic Vision Systems. Li Z; Li M; Zhu T; Li B; Wang Z; Shao S; Deng Z; Zhao X; Liu C; Zhao J Small Methods; 2024 Jun; ():e2400359. PubMed ID: 38845084 [TBL] [Abstract][Full Text] [Related]
14. Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors. Dai S; Wu X; Liu D; Chu Y; Wang K; Yang B; Huang J ACS Appl Mater Interfaces; 2018 Jun; 10(25):21472-21480. PubMed ID: 29877073 [TBL] [Abstract][Full Text] [Related]
15. Artificial Synapses Based on Ferroelectric Schottky Barrier Field-Effect Transistors for Neuromorphic Applications. Xi F; Han Y; Liu M; Bae JH; Tiedemann A; Grützmacher D; Zhao QT ACS Appl Mater Interfaces; 2021 Jul; 13(27):32005-32012. PubMed ID: 34171195 [TBL] [Abstract][Full Text] [Related]
16. Highly Sensitive, Low-Energy-Consumption Biomimetic Olfactory Synaptic Transistors Based on the Aggregation of the Semiconductor Films. Wu X; Chen S; Jiang L; Wang X; Qiu L; Zheng L ACS Sens; 2024 May; 9(5):2673-2683. PubMed ID: 38688032 [TBL] [Abstract][Full Text] [Related]
17. Gate-Tunable Synaptic Dynamics of Ferroelectric-Coupled Carbon-Nanotube Transistors. Choi Y; Kim JH; Qian C; Kang J; Hersam MC; Park JH; Cho JH ACS Appl Mater Interfaces; 2020 Jan; 12(4):4707-4714. PubMed ID: 31878774 [TBL] [Abstract][Full Text] [Related]
18. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems. Li X; Yu B; Wang B; Bao L; Zhang B; Li H; Yu Z; Zhang T; Yang Y; Huang R; Wu Y; Li M Nanoscale; 2020 Aug; 12(30):16348-16358. PubMed ID: 32725043 [TBL] [Abstract][Full Text] [Related]
19. Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices. Shao L; Wang H; Yang Y; He Y; Tang Y; Fang H; Zhao J; Xiao H; Liang K; Wei M; Xu W; Luo M; Wan Q; Hu W; Gao T; Cui Z ACS Appl Mater Interfaces; 2019 Mar; 11(12):12161-12169. PubMed ID: 30817113 [TBL] [Abstract][Full Text] [Related]
20. Pulsed laser deposition of a Ga Su L; Wu S; Wang X; Sun K; Yun T; Du Y; Lu J Opt Lett; 2024 Feb; 49(3):474-477. PubMed ID: 38300037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]