BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33590762)

  • 1. Building
    Kopač Lautar A; Bitenc J; Dominko R; Filhol JS
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8263-8273. PubMed ID: 33590762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent DFT Study.
    Kopač Lautar A; Bitenc J; Rejec T; Dominko R; Filhol JS; Doublet ML
    J Am Chem Soc; 2020 Mar; 142(11):5146-5153. PubMed ID: 32031361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Investigation of LiF Formation at Graphite-Electrolyte Interfaces.
    Qin X; Bhowmik A; Vegge T; Castelli IE
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29347-29354. PubMed ID: 38783425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a Stable Anode-Electrolyte Interface in Mg Batteries by Electrolyte Additive.
    Li Z; Diemant T; Meng Z; Xiu Y; Reupert A; Wang L; Fichtner M; Zhao-Karger Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33123-33132. PubMed ID: 34227794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from
    Agarwal G; Howard JD; Prabhakaran V; Johnson GE; Murugesan V; Mueller KT; Curtiss LA; Assary RS
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38816-38825. PubMed ID: 34362250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example.
    Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C
    ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling interfacial electrochemistry: concepts and tools.
    Kopač Lautar A; Hagopian A; Filhol JS
    Phys Chem Chem Phys; 2020 May; 22(19):10569-10580. PubMed ID: 32103225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Interface Stability and Room-Temperature Performance of Solid-State Lithium Batteries by Integrating Cathode/Electrolyte and Graphite Coating.
    Chen H; Liu QY; Jing MX; Chen F; Yuan WY; Ju BW; Tu FY; Shen XQ; Qin SB
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15120-15127. PubMed ID: 32134236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Simulation of Electrode-Solution Interfaces.
    Scalfi L; Salanne M; Rotenberg B
    Annu Rev Phys Chem; 2021 Apr; 72():189-212. PubMed ID: 33395545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Electrode-Electrolyte Interface of a Model K-Ion Battery Electrode─The Origin of Rate Capability Discrepancy between Aqueous and Non-Aqueous Electrolytes.
    Lemaire P; Serva A; Salanne M; Rousse G; Perrot H; Sel O; Tarascon JM
    ACS Appl Mater Interfaces; 2022 May; 14(18):20835-20847. PubMed ID: 35481776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces.
    Kim K; Siegel DJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39940-39950. PubMed ID: 31576739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyte Salts for Sodium-Ion Batteries: NaPF
    Cheng F; Cao M; Li Q; Fang C; Han J; Huang Y
    ACS Nano; 2023 Sep; 17(18):18608-18615. PubMed ID: 37710356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT modelling of explicit solid-solid interfaces in batteries: methods and challenges.
    Leung K
    Phys Chem Chem Phys; 2020 May; 22(19):10412-10425. PubMed ID: 32073055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries.
    Kumar N; Siegel DJ
    J Phys Chem Lett; 2016 Mar; 7(5):874-81. PubMed ID: 26888224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes.
    Yan C; Li HR; Chen X; Zhang XQ; Cheng XB; Xu R; Huang JQ; Zhang Q
    J Am Chem Soc; 2019 Jun; 141(23):9422-9429. PubMed ID: 31117672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.