These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33591168)

  • 1. Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP.
    Anson F; Liu B; Kanjilal P; Wu P; Hardy JA; Thayumanavan S
    Biomacromolecules; 2021 Mar; 22(3):1261-1272. PubMed ID: 33591168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay.
    Beach MA; Teo SLY; Chen MZ; Smith SA; Pouton CW; Johnston APR; Such GK
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3653-3661. PubMed ID: 34964593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.
    Lönn P; Kacsinta AD; Cui XS; Hamil AS; Kaulich M; Gogoi K; Dowdy SF
    Sci Rep; 2016 Sep; 6():32301. PubMed ID: 27604151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles.
    Xu E; Saltzman WM; Piotrowski-Daspit AS
    J Control Release; 2021 Jul; 335():465-480. PubMed ID: 34077782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles.
    Kanjilal P; Dutta K; Thayumanavan S
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202209227. PubMed ID: 35866880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides.
    Serulla M; Anees P; Hallaj A; Trofimenko E; Kalia T; Krishnan Y; Widmann C
    Eur J Pharm Biopharm; 2023 Mar; 184():116-124. PubMed ID: 36709921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides.
    Salim H; Pei D
    Methods Mol Biol; 2022; 2371():301-316. PubMed ID: 34596855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids.
    Kelly IB; Fletcher RB; McBride JR; Weiss SM; Duvall CL
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39602-39611. PubMed ID: 32805967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide conjugation enhances the cellular co-localization, but not endosomal escape, of modular poly(acrylamide-co-methacrylic acid) nanogels.
    Clegg JR; Sun JA; Gu J; Venkataraman AK; Peppas NA
    J Control Release; 2021 Jan; 329():1162-1171. PubMed ID: 33127451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
    Degors IMS; Wang C; Rehman ZU; Zuhorn IS
    Acc Chem Res; 2019 Jul; 52(7):1750-1760. PubMed ID: 31243966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine-based coordinative polymers for efficient intracellular protein delivery
    Chen C; Gao P; Wang H; Cheng Y; Lv J
    Biomater Sci; 2023 Feb; 11(5):1765-1775. PubMed ID: 36648450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymer-Encapsulated Molecular Cargos upon Photothermal Heating.
    Brkovic N; Zhang L; Peters JN; Kleine-Doepke S; Parak WJ; Zhu D
    Small; 2020 Nov; 16(46):e2003639. PubMed ID: 33108047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides.
    Dailing EA; Kilchrist KV; Tierney JW; Fletcher RB; Evans BC; Duvall CL
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50222-50235. PubMed ID: 33124813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale.
    Paramasivam P; Franke C; Stöter M; Höijer A; Bartesaghi S; Sabirsh A; Lindfors L; Arteta MY; Dahlén A; Bak A; Andersson S; Kalaidzidis Y; Bickle M; Zerial M
    J Cell Biol; 2022 Feb; 221(2):. PubMed ID: 34882187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosomal escape: a bottleneck in intracellular delivery.
    Shete HK; Prabhu RH; Patravale VB
    J Nanosci Nanotechnol; 2014 Jan; 14(1):460-74. PubMed ID: 24730275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles.
    Chen J; Li J; Zhou J; Lin Z; Cavalieri F; Czuba-Wojnilowicz E; Hu Y; Glab A; Ju Y; Richardson JJ; Caruso F
    ACS Nano; 2019 Oct; 13(10):11653-11664. PubMed ID: 31573181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.