BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 33591181)

  • 1. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study.
    Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J
    J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.
    Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N
    J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage.
    Xu Y; Manghrani A; Liu B; Shi H; Pham U; Liu A; Al-Hashimi HM
    J Biol Chem; 2020 Nov; 295(47):15933-15947. PubMed ID: 32913127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient Hoogsteen base pairs in canonical duplex DNA.
    Nikolova EN; Kim E; Wise AA; O'Brien PJ; Andricioaei I; Al-Hashimi HM
    Nature; 2011 Feb; 470(7335):498-502. PubMed ID: 21270796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A historical account of Hoogsteen base-pairs in duplex DNA.
    Nikolova EN; Zhou H; Gottardo FL; Alvey HS; Kimsey IJ; Al-Hashimi HM
    Biopolymers; 2013 Dec; 99(12):955-68. PubMed ID: 23818176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases.
    Ornstein RL; Fresco JR
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.
    Bhattacharyya D; Halder S; Basu S; Mukherjee D; Kumar P; Bansal M
    J Comput Aided Mol Des; 2017 Feb; 31(2):219-235. PubMed ID: 28102461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.
    Cubero E; Luque FJ; Orozco M
    Biophys J; 2006 Feb; 90(3):1000-8. PubMed ID: 16287814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing.
    Liu K; Miles HT; Frazier J; Sasisekharan V
    Biochemistry; 1993 Nov; 32(44):11802-9. PubMed ID: 8218251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of DNA structures under molecular crowding conditions with neutral and positive charged cosolutes.
    Miyoshi D; Nakamura K; Muhuli S; Karimata HT; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2008; (52):413-4. PubMed ID: 18776429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):769-81. PubMed ID: 11575931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    J Am Chem Soc; 2006 Jun; 128(24):7957-63. PubMed ID: 16771510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix.
    Sugimoto N
    Int Rev Cell Mol Biol; 2014; 307():205-73. PubMed ID: 24380597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton exchange and base pair opening in a DNA triple helix.
    Powell SW; Jiang L; Russu IM
    Biochemistry; 2001 Sep; 40(37):11065-72. PubMed ID: 11551203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing A-T and G-C Hoogsteen base pairs in stressed protein-bound duplex DNA.
    Shi H; Kimsey IJ; Gu S; Liu HF; Pham U; Schumacher MA; Al-Hashimi HM
    Nucleic Acids Res; 2021 Dec; 49(21):12540-12555. PubMed ID: 34792150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.