These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 33591494)
1. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane. Lin X; Meenderink SWF; Stomackin G; Jung TT; Martin GK; Dong W J Assoc Res Otolaryngol; 2021 Jun; 22(3):261-274. PubMed ID: 33591494 [TBL] [Abstract][Full Text] [Related]
2. Distortion product otoacoustic emissions: Sensitive measures of tympanic -membrane perforation and healing processes in a gerbil model. Dong W; Stomackin G; Lin X; Martin GK; Jung TT Hear Res; 2019 Jul; 378():3-12. PubMed ID: 30709692 [TBL] [Abstract][Full Text] [Related]
3. Effects of tympanic membrane perforation on middle ear transmission in gerbil. Stomackin G; Kidd S; Jung TT; Martin GK; Dong W Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199 [TBL] [Abstract][Full Text] [Related]
4. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission. Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347 [TBL] [Abstract][Full Text] [Related]
5. Middle ear forward and reverse transmission in gerbil. Dong W; Olson ES J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455 [TBL] [Abstract][Full Text] [Related]
6. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat. Voss SE; Shera CA J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2187-98. PubMed ID: 15532651 [TBL] [Abstract][Full Text] [Related]
8. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis. Dalhoff E; Turcanu D; Gummer AW Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450 [TBL] [Abstract][Full Text] [Related]
9. Non-ossicular signal transmission in human middle ears: Experimental assessment of the "acoustic route" with perforated tympanic membranes. Voss SE; Rosowski JJ; Merchant SN; Peake WT J Acoust Soc Am; 2007 Oct; 122(4):2135-53. PubMed ID: 17902851 [TBL] [Abstract][Full Text] [Related]
10. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. Puria S; Allen JB J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506 [TBL] [Abstract][Full Text] [Related]
11. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears. Keefe DH; Abdala C J Acoust Soc Am; 2007 Feb; 121(2):978-93. PubMed ID: 17348521 [TBL] [Abstract][Full Text] [Related]
12. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements. Teoh SW; Flandermeyer DT; Rosowski JJ Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106 [TBL] [Abstract][Full Text] [Related]
13. Reverse transmission along the ossicular chain in gerbil. Dong W; Decraemer WF; Olson ES J Assoc Res Otolaryngol; 2012 Aug; 13(4):447-59. PubMed ID: 22466074 [TBL] [Abstract][Full Text] [Related]
14. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement. Thornton JL; Chevallier KM; Koka K; Gabbard SA; Tollin DJ J Assoc Res Otolaryngol; 2013 Aug; 14(4):451-64. PubMed ID: 23615802 [TBL] [Abstract][Full Text] [Related]
15. Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. Voss SE; Rosowski JJ; Merchant SN; Peake WT J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1432-44. PubMed ID: 11572354 [TBL] [Abstract][Full Text] [Related]
16. The influence of tympanic-membrane orientation on acoustic ear-canal quantities: A finite-element analysis. Nørgaard KM; Motallebzadeh H; Puria S J Acoust Soc Am; 2024 Apr; 155(4):2769-2785. PubMed ID: 38662609 [TBL] [Abstract][Full Text] [Related]
17. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans. Sun XM; Shaver MD Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291 [TBL] [Abstract][Full Text] [Related]
18. Restoration of middle-ear input in fluid-filled middle ears by controlled introduction of air or a novel air-filled implant. Ravicz ME; Chien WW; Rosowski JJ Hear Res; 2015 Oct; 328():8-23. PubMed ID: 26121946 [TBL] [Abstract][Full Text] [Related]
19. Compensating for deviant middle ear pressure in otoacoustic emission measurements, data, and comparison to a middle ear model. Hof JR; de Kleine E; Avan P; Anteunis LJ; Koopmans PJ; van Dijk P Otol Neurotol; 2012 Jun; 33(4):504-11. PubMed ID: 22569147 [TBL] [Abstract][Full Text] [Related]