These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33591724)

  • 1. SERS-Microfluidic Approach for the Quantitative Detection of miRNA Using DNAzyme-Mediated Reciprocal Signal Amplification.
    Ma L; Ye S; Wang X; Zhang J
    ACS Sens; 2021 Mar; 6(3):1392-1399. PubMed ID: 33591724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micro-nano interface integrated SERS-based microfluidic sensor for miRNA detection using DNAzyme walker amplification.
    Lu Y; Yu Y; Wang Y; Zhou W; Cheng Z; Yu L; Zheng S; Gao R
    Anal Chim Acta; 2023 Dec; 1283():341957. PubMed ID: 37977782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggerable Mutually Amplified Signal Probe Based SERS-Microfluidics Platform for the Efficient Enrichment and Quantitative Detection of miRNA.
    Wang Z; Ye S; Zhang N; Liu X; Wang M
    Anal Chem; 2019 Apr; 91(8):5043-5050. PubMed ID: 30900865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification.
    Ge S; Li G; Zhou X; Mao Y; Gu Y; Li Z; Gu Y; Cao X
    Talanta; 2022 Aug; 245():123478. PubMed ID: 35436733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21.
    Xu W; Zhang Y; Chen H; Dong J; Khan R; Shen J; Liu H
    Anal Bioanal Chem; 2022 Jun; 414(14):4079-4088. PubMed ID: 35419693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals.
    Zhang N; Ye S; Wang Z; Li R; Wang M
    ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification.
    Tian A; Liu Y; Gao J
    Talanta; 2017 Aug; 171():185-189. PubMed ID: 28551127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA.
    Ma W; Liu L; Zhang X; Liu X; Xu Y; Li S; Zeng M
    Anal Chim Acta; 2022 Aug; 1221():340139. PubMed ID: 35934371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques.
    Wang Z; Zong S; Wang Z; Wu L; Chen P; Yun B; Cui Y
    Nanotechnology; 2017 Mar; 28(10):105501. PubMed ID: 28139463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined SERS Microfluidic Chip with Gold Nanocone Array for Effective Early Lung Cancer Prognosis in Mice Model.
    Qian Y; Gu Y; Deng J; Cai Z; Wang Y; Zhou R; Zhu D; Lu H; Wang Z
    Int J Nanomedicine; 2023; 18():3429-3442. PubMed ID: 37383221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly.
    Chen J; Wu Y; Fu C; Cao H; Tan X; Shi W; Wu Z
    Biosens Bioelectron; 2019 Oct; 143():111619. PubMed ID: 31454694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intramolecular DNAzyme-based amplification for miRNA analysis with improving reaction kinetics and high sensitivity.
    Huang T; Chen G; Liu B; Yang Z; Huang Y; Xie B; Li MM; Chen JX; Chen J; Dai Z
    Talanta; 2022 Mar; 239():123137. PubMed ID: 34920260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pump-free and high-throughput microfluidic chip for highly sensitive SERS assay of gastric cancer-related circulating tumor DNA via a cascade signal amplification strategy.
    Cao X; Ge S; Hua W; Zhou X; Lu W; Gu Y; Li Z; Qian Y
    J Nanobiotechnology; 2022 Jun; 20(1):271. PubMed ID: 35690820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum.
    Cao X; Ge S; Zhou X; Mao Y; Sun Y; Lu W; Ran M
    Biosens Bioelectron; 2022 Jun; 205():114110. PubMed ID: 35219946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA.
    Novara C; Chiadò A; Paccotti N; Catuogno S; Esposito CL; Condorelli G; De Franciscis V; Geobaldo F; Rivolo P; Giorgis F
    Faraday Discuss; 2017 Dec; 205():271-289. PubMed ID: 28884170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification.
    Zhang H; Wang K; Bu S; Li Z; Ju C; Wan J
    Mol Cell Probes; 2018 Apr; 38():13-18. PubMed ID: 29458177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent-Raman Binary Star Ratio Probe for MicroRNA Detection and Imaging in Living Cells.
    Zhang J; Zhang H; Ye S; Wang X; Ma L
    Anal Chem; 2021 Jan; 93(3):1466-1471. PubMed ID: 33347282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Signal-on" SERS sensing platform for highly sensitive and selective Pb
    Wu Y; Fu C; Xiang J; Cao Y; Deng Y; Xu R; Zhang H; Shi W
    Anal Chim Acta; 2020 Aug; 1127():106-113. PubMed ID: 32800113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SERS microfluidic chip integrated with double amplified signal off-on strategy for detection of microRNA in NSCLC.
    Zhu J; Luo J; Hua Z; Feng X; Cao X
    Biomed Opt Express; 2024 Feb; 15(2):594-607. PubMed ID: 38404336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.