BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 33591726)

  • 1. Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
    Muir VG; Qazi TH; Shan J; Groll J; Burdick JA
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4269-4281. PubMed ID: 33591726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications.
    Muir VG; Prendergast ME; Burdick JA
    J Vis Exp; 2022 May; (183):. PubMed ID: 35662235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications.
    Mendes BB; Daly AC; Reis RL; Domingues RMA; Gomes ME; Burdick JA
    Acta Biomater; 2021 Jan; 119():101-113. PubMed ID: 33130309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties.
    Muir VG; Weintraub S; Dhand AP; Fallahi H; Han L; Burdick JA
    Adv Sci (Weinh); 2023 Apr; 10(10):e2206117. PubMed ID: 36717272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration.
    An C; Zhou R; Zhang H; Zhang Y; Liu W; Liu J; Bao B; Sun K; Ren C; Zhang Y; Lin Q; Zhang L; Cheng F; Song J; Zhu L; Wang H
    Acta Biomater; 2023 Feb; 157():91-107. PubMed ID: 36427687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks.
    Flégeau K; Puiggali-Jou A; Zenobi-Wong M
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35483326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Balance between Inter- and Intra-Microgel Mechanics Governs Stem Cell Viability in Injectable Dynamic Granular Hydrogels.
    Morley CD; Ding EA; Carvalho EM; Kumar S
    Adv Mater; 2023 Nov; 35(44):e2304212. PubMed ID: 37653580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking.
    Muir VG; Qazi TH; Weintraub S; Torres Maldonado BO; Arratia PE; Burdick JA
    Small; 2022 Sep; 18(36):e2201115. PubMed ID: 35315233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic Rod-Shaped Particles Influence Injectable Granular Hydrogel Properties and Cell Invasion.
    Qazi TH; Wu J; Muir VG; Weintraub S; Gullbrand SE; Lee D; Issadore D; Burdick JA
    Adv Mater; 2022 Mar; 34(12):e2109194. PubMed ID: 34932833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support.
    Shin M; Song KH; Burrell JC; Cullen DK; Burdick JA
    Adv Sci (Weinh); 2019 Oct; 6(20):1901229. PubMed ID: 31637164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters.
    Pérez LA; Hernández R; Alonso JM; Pérez-González R; Sáez-Martínez V
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically crosslinked thermoresponsive granular hydrogels.
    Lee HP; Cai KX; Wang TC; Davis R; Deo K; Singh KA; Lele TP; Gaharwar AK
    J Biomed Mater Res A; 2023 Oct; 111(10):1577-1587. PubMed ID: 37199446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatin Methacryloyl Granular Hydrogel Scaffolds: High-throughput Microgel Fabrication, Lyophilization, Chemical Assembly, and 3D Bioprinting.
    Ataie Z; Jaberi A; Kheirabadi S; Risbud A; Sheikhi A
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36571405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery.
    Lee HP; Davis R; Wang TC; Deo KA; Cai KX; Alge DL; Lele TP; Gaharwar AK
    ACS Appl Bio Mater; 2023 Sep; 6(9):3683-3695. PubMed ID: 37584641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay of Hydrogel Composition and Geometry on Human Mesenchymal Stem Cell Osteogenesis.
    Shrestha S; Li F; Truong VX; Forsythe JS; Frith JE
    Biomacromolecules; 2020 Dec; 21(12):5323-5335. PubMed ID: 33237736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to Characterize Granular Hydrogel Rheological Properties, Porosity, and Cell Invasion.
    Qazi TH; Muir VG; Burdick JA
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1427-1442. PubMed ID: 35330993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels?
    Kessler M; Nassisi Q; Amstad E
    Macromol Rapid Commun; 2022 Aug; 43(15):e2200196. PubMed ID: 35467048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
    Cha C; Oh J; Kim K; Qiu Y; Joh M; Shin SR; Wang X; Camci-Unal G; Wan KT; Liao R; Khademhosseini A
    Biomacromolecules; 2014 Jan; 15(1):283-90. PubMed ID: 24344625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granular hydrogels for endogenous tissue repair.
    Qazi TH; Burdick JA
    Biomater Biosyst; 2021 Mar; 1():100008. PubMed ID: 36825161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro.
    Ramirez-Calderon G; Susapto HH; Hauser CAE
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29281-29292. PubMed ID: 34142544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.