These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3359191)

  • 21. Development of glutamate binding sites in the visual structures of the rat brain. Effect of visual pattern deprivation.
    Schliebs R; Kullmann E; Bigl V
    Biomed Biochim Acta; 1986; 45(4):495-506. PubMed ID: 3010959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography.
    Collins RC; McCandless DW; Wagman IL
    J Neurochem; 1987 Nov; 49(5):1564-70. PubMed ID: 3668540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo imaging of brain incorporation of fatty acids and of 2-deoxy-D-glucose demonstrates functional and structural neuroplastic effects of chronic unilateral visual deprivation in rats.
    Wakabayashi S; Freed LM; Chang M; Rapoport SI
    Brain Res; 1995 May; 679(1):110-22. PubMed ID: 7648253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. c-Fos expression in the visual system of the tree shrew (Tupaia belangeri).
    Poveda A; Kretz R
    J Chem Neuroanat; 2009 Jul; 37(4):214-28. PubMed ID: 19481006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [14C]deoxyglucose uptake of the rat visual centres under monocular optokinetic stimulation.
    Biral G; Cavazzuti M; Porro C; Ferrari R; Corazza R
    Behav Brain Res; 1984 Mar; 11(3):271-5. PubMed ID: 6721919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alterations in activity at auditory nuclei of the rat induced by exposure to microwave radiation: autoradiographic evidence using [14C]2-deoxy-D-glucose.
    Wilson BS; Zook JM; Joines WT; Casseday JH
    Brain Res; 1980 Apr; 187(2):291-306. PubMed ID: 7370731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique.
    Kennedy C; Des Rosiers MH; Sakurada O; Shinohara M; Reivich M; Jehle JW; Sokoloff L
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):4230-4. PubMed ID: 825861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A difference in [14C]deoxyglucose autoradiographic patterns in striate cortex between Macaca and Saimiri monkeys following monocular stimulation.
    Hendrickson AE; Wilson JR
    Brain Res; 1979 Jul; 170(2):353-8. PubMed ID: 88997
    [No Abstract]   [Full Text] [Related]  

  • 29. Effects of prolonged retinal ganglion cell inactivity on superior colliculus glucose metabolism in the mature hooded rat.
    Thurlow GA; Cooper RM
    Exp Neurol; 1989 Jun; 104(3):272-8. PubMed ID: 2721630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity-dependent changes in eye influence during monocular blockade: increases in the effects of visual stimulation on 2-DG uptake in the adult rat geniculostriate system.
    Thurlow GA; Cooper RM
    J Comp Neurol; 1991 Apr; 306(4):697-707. PubMed ID: 2071701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of activity in pigeon brain's visual relays as revealed by the [14C]2-deoxyglucose method.
    Streit P; Burkhalter A; Stella M; Cuénod M
    Neuroscience; 1980; 5(6):1053-66. PubMed ID: 6157129
    [No Abstract]   [Full Text] [Related]  

  • 32. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose.
    Sokoloff L
    J Cereb Blood Flow Metab; 1981; 1(1):7-36. PubMed ID: 7035471
    [No Abstract]   [Full Text] [Related]  

  • 33. Increased dependence of superior colliculus metabolic activity on visual cortex after eye enucleation.
    Thurlow GA; Cooper RM
    Exp Neurol; 1985 Dec; 90(3):594-600. PubMed ID: 4065275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic changes in the superior colliculus after retinal receptor loss--neurotrophic interactions in the inactive visual system.
    Thurlow GA; Cooper RM
    Exp Neurol; 1988 Jun; 100(3):563-77. PubMed ID: 3366207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroreceptor bindings and synaptic activity in visual system of monocularly enucleated rat.
    Kiyosawa M; Ishiwata K; Noguchi J; Endo K; Wang WF; Suzuki F; Senda M
    Jpn J Ophthalmol; 2001; 45(3):264-9. PubMed ID: 11369376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of monocular deprivation on uptake and binding of [3H]glutamate in the visual system of rat brain.
    Schliebs R; Kunert E; Bigl V
    J Neurochem; 1984 Nov; 43(5):1490-3. PubMed ID: 6149263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian variations in local cerebral glucose utilization in freely moving rats.
    Room P; Tielemans AJ
    Brain Res; 1989 Dec; 505(2):321-5. PubMed ID: 2598050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulus frequency affects c-fos expression in the rat visual system.
    Correa-Lacárcel J; Pujante MJ; Terol FF; Almenar-García V; Puchades-Orts A; Ballesta JJ; Lloret J; Robles JA; Sanchez-del-Campo F
    J Chem Neuroanat; 2000 Mar; 18(3):135-46. PubMed ID: 10720796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2-Deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila.
    Buchner E; Buchner S; Hengstenberg R
    Science; 1979 Aug; 205(4407):687-8. PubMed ID: 111349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different rates of functional development in the two visual systems of the chicken revealed by [14C]2-deoxyglucose.
    Rogers LJ; Bell GA
    Brain Res Dev Brain Res; 1989 Oct; 49(2):161-72. PubMed ID: 2805329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.