These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33592081)

  • 1. Reply to the 'Comment on "Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets"' by A. I. Rusanov, D. V. Tatyanenko and A. K. Shchekin,
    Zhang H; Zhang X
    Nanoscale; 2021 Feb; 13(7):4311-4313. PubMed ID: 33592081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets" by H. Zhang and X. Zhang,
    Rusanov AI; Tatyanenko DV; Shchekin AK
    Nanoscale; 2021 Feb; 13(7):4308-4310. PubMed ID: 33592082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets.
    Zhang H; Zhang X
    Nanoscale; 2019 Feb; 11(6):2823-2828. PubMed ID: 30675880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces.
    Qin J; Zhou D; Shi B; Chen F; Luo L; Kumar A; Wang C; Lin X; Sheng S; Xu W; Shang Z; Cheng C; Kuang Y; Lin WF; Xu H; Sun X
    Langmuir; 2020 Oct; 36(39):11422-11428. PubMed ID: 32862650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reply to the 'Comment on "Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants"' by J. Ma, Y. Xiong and F. Yu, Nanoscale, 2019, 11, DOI: 10.1039/C8NR08780F.
    Yousefi N; Tufenkji N
    Nanoscale; 2020 May; 12(17):9899-9901. PubMed ID: 32329486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact angles and movement of air bubbles on bioinspired conical surfaces.
    Gurera D; Bhushan B
    J Colloid Interface Sci; 2020 Oct; 577():530-541. PubMed ID: 32534192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles.
    Liang Ling WY; Ng TW; Neild A; Zheng Q
    J Colloid Interface Sci; 2011 Feb; 354(2):832-42. PubMed ID: 21146828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Beetles in Nature to the Laboratory: Actuating Underwater Locomotion on Hydrophobic Surfaces.
    Pinchasik BE; Steinkühler J; Wuytens P; Skirtach AG; Fratzl P; Möhwald H
    Langmuir; 2015 Dec; 31(51):13734-42. PubMed ID: 26633751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.
    Zhang J; Müller-Plathe F; Leroy F
    Langmuir; 2015 Jul; 31(27):7544-52. PubMed ID: 26090782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of nanoscale droplets on moving surfaces.
    Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM
    Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble Attachment to Cellulose and Silica Surfaces of Varied Surface Energies: Wetting Transition and Implications in Foam Forming.
    Ketola AE; Xiang W; Hjelt T; Pajari H; Tammelin T; Rojas OJ; Ketoja JA
    Langmuir; 2020 Jul; 36(26):7296-7308. PubMed ID: 32510965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric foaming with nanoscale nucleants: a surface nanobubble mechanism.
    Kumar DN; Roy A; Jha A; Sambasivan A; Harikrishnan G
    Chemphyschem; 2014 Dec; 15(18):4006-10. PubMed ID: 25319179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of two differently sized oscillating bubbles in a free field.
    Chew LW; Klaseboer E; Ohl SW; Khoo BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066307. PubMed ID: 22304190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Nanostructured Surfaces for On-Demand Bubble Transportation.
    Tang X; Xiong H; Kong T; Tian Y; Li WD; Wang L
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3029-3038. PubMed ID: 29320159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting Properties of the CO
    Silvestri A; Ataman E; Budi A; Stipp SLS; Gale JD; Raiteri P
    Langmuir; 2019 Dec; 35(50):16669-16678. PubMed ID: 31714788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles.
    Zhao Y; Cho SK
    Lab Chip; 2007 Feb; 7(2):273-80. PubMed ID: 17268631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness.
    Sarkar S; Roy T; Roy A; Moitra S; Ganguly R; Megaridis CM
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):690-697. PubMed ID: 32814192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.