These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3359225)

  • 1. Dorsal roots are absent from the tail of larval Xenopus.
    Nordlander RH; Awwiller DM; Cook H
    Brain Res; 1988 Feb; 440(2):391-5. PubMed ID: 3359225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.
    Nishikawa K; Wassersug R
    J Comp Neurol; 1988 Mar; 269(2):193-202. PubMed ID: 3356808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord.
    LaMotte C
    J Comp Neurol; 1977 Apr; 172(3):529-61. PubMed ID: 402397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the spinal nerves of the larval lamprey: IV. Spinal nerve roots of 21-mm larval and adult lampreys, with special reference to the relation of meninges with the root sheath and the perineurium.
    Nakao T; Ishizawa A
    J Comp Neurol; 1987 Feb; 256(3):386-99. PubMed ID: 3571512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth cones and axon trajectories of a sensory pathway in the amphibian spinal cord.
    Nordlander RH; Gazzerro JW; Cook H
    J Comp Neurol; 1991 May; 307(4):539-48. PubMed ID: 1869630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of the relationship between dorsal root afferents and motoneurons in the larval bullfrog spinal cord.
    Liuzzi FJ; Beattie MS; Bresnahan JC
    Brain Res Bull; 1985 Apr; 14(4):377-92. PubMed ID: 3873979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of lumbar dorsal root axons into the spinal cord of adult frogs (Rana pipiens), an HRP study.
    Liuzzi FJ; Lasek RJ
    J Comp Neurol; 1985 Feb; 232(4):456-65. PubMed ID: 3872317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afferent fibres in cat ventral roots: electrophysiological and histological evidence.
    Azerad J; Hunt CC; Laporte Y; Pollin B; Thiesson D
    J Physiol; 1986 Oct; 379():229-43. PubMed ID: 3559992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.
    Häbler HJ; Jänig W; Koltzenburg M; McMahon SB
    J Physiol; 1990 Mar; 422():265-87. PubMed ID: 2352181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphology of the spinal cord efferent and afferent neurons contributing to the ventral roots of the cat.
    Light AR; Metz CB
    J Comp Neurol; 1978 Jun; 179(3):501-15. PubMed ID: 641227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eyes transplanted to tadpole tails send axons rostrally in two spinal-cord tracts.
    Katz MJ; Lasek RJ
    Science; 1978 Jan; 199(4325):202-4. PubMed ID: 619452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmyelinated sensory and preganglionic fibers in rat L6 and S1 ventral spinal roots.
    Coggeshall RE; Maynard CW; Langford LA
    J Comp Neurol; 1980 Sep; 193(1):41-7. PubMed ID: 7430432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Features of projections of afferent fibers of the ventral roots to neurons of the dorsal horn of the spinal cord in the cat].
    Tleulin SZh; Kleĭnbok IIa; Doronin VN
    Neirofiziologiia; 1985; 17(3):300-5. PubMed ID: 2991786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Border controls at the mammalian spinal cord: late-surviving neural crest boundary cap cells at dorsal root entry sites may regulate sensory afferent ingrowth and entry zone morphogenesis.
    Golding JP; Cohen J
    Mol Cell Neurosci; 1997; 9(5-6):381-96. PubMed ID: 9361276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary sensory afferent innervation of the developing superficial dorsal horn in the South American opossum Monodelphis domestica.
    Kitchener PD; Hutton EJ; Knott GW
    J Comp Neurol; 2006 Mar; 495(1):37-52. PubMed ID: 16432898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative study of the growth and development of the ventral root in normal and experimental conditions.
    Prestige MC; Wilson MA
    J Embryol Exp Morphol; 1974 Dec; 32(3):819-33. PubMed ID: 4463230
    [No Abstract]   [Full Text] [Related]  

  • 17. Many ventral root afferent fibers in the cat are third branches of dorsal root ganglion cells.
    Kim J; Shin HK; Chung JM
    Brain Res; 1987 Aug; 417(2):304-14. PubMed ID: 3651817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substance P-, calcitonin gene-related peptide, growth-associated protein-43, and neurotrophin receptor-like immunoreactivity associated with unmyelinated axons in feline ventral roots and pia mater.
    Risling M; Dalsgaard CJ; Frisén J; Sjögren AM; Fried K
    J Comp Neurol; 1994 Jan; 339(3):365-86. PubMed ID: 7510731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The Magendie law on spinal ventral and dorsal roots is still of current value].
    Hildebrand C; Risling M; Dalsgaard CJ
    Lakartidningen; 1989 Jul; 86(30-31):2597-9. PubMed ID: 2674573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.