These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33592372)
21. Higher Temperatures Do Not Always Achieve Better Antibiotic Resistance Gene Removal in Anaerobic Digestion of Swine Manure. Huang X; Zheng J; Tian S; Liu C; Liu L; Wei L; Fan H; Zhang T; Wang L; Zhu G; Xu K Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683745 [TBL] [Abstract][Full Text] [Related]
22. Profiles of antibiotic- and heavy metal-related resistance genes in animal manure revealed using a metagenomic analysis. Liu C; Li G; Qin X; Xu Y; Wang J; Wu G; Feng H; Ye J; Zhu C; Li X; Zheng X Ecotoxicol Environ Saf; 2022 Jul; 239():113655. PubMed ID: 35617901 [TBL] [Abstract][Full Text] [Related]
23. Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry. Peng S; Zheng H; Herrero-Fresno A; Olsen JE; Dalsgaard A; Ding Z Sci Total Environ; 2021 Oct; 792():148259. PubMed ID: 34147788 [TBL] [Abstract][Full Text] [Related]
24. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Wu Y; Wen Q; Chen Z; Fu Q; Bao H Sci Total Environ; 2022 Jan; 805():150086. PubMed ID: 34537705 [TBL] [Abstract][Full Text] [Related]
25. Effects of passivators on antibiotic resistance genes and related mechanisms during composting of copper-enriched pig manure. Qian X; Gu J; Sun W; Wang X; Li H Sci Total Environ; 2019 Jul; 674():383-391. PubMed ID: 31005840 [TBL] [Abstract][Full Text] [Related]
26. Antibiotic resistance gene transfer during anaerobic digestion with added copper: Important roles of mobile genetic elements. Zhang R; Gu J; Wang X; Li Y Sci Total Environ; 2020 Nov; 743():140759. PubMed ID: 32659562 [TBL] [Abstract][Full Text] [Related]
27. The swine waste resistome: Spreading and transfer of antibiotic resistance genes in Escherichia coli strains and the associated microbial communities. Checcucci A; Buscaroli E; Modesto M; Luise D; Blasioli S; Scarafile D; Di Vito M; Bugli F; Trevisi P; Braschi I; Mattarelli P Ecotoxicol Environ Saf; 2024 Sep; 283():116774. PubMed ID: 39053184 [TBL] [Abstract][Full Text] [Related]
28. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Xie WY; Yang XP; Li Q; Wu LH; Shen QR; Zhao FJ Environ Pollut; 2016 Dec; 219():182-190. PubMed ID: 27814534 [TBL] [Abstract][Full Text] [Related]
29. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China. Wang N; Guo X; Yan Z; Wang W; Chen B; Ge F; Ye B PLoS One; 2016; 11(7):e0156889. PubMed ID: 27388166 [TBL] [Abstract][Full Text] [Related]
30. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Ji X; Shen Q; Liu F; Ma J; Xu G; Wang Y; Wu M J Hazard Mater; 2012 Oct; 235-236():178-85. PubMed ID: 22868748 [TBL] [Abstract][Full Text] [Related]
31. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. Sandberg KD; LaPara TM FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26738555 [TBL] [Abstract][Full Text] [Related]
32. Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Mazhar SH; Li X; Rashid A; Su J; Xu J; Brejnrod AD; Su JQ; Wu Y; Zhu YG; Zhou SG; Feng R; Rensing C Sci Total Environ; 2021 Feb; 755(Pt 2):142702. PubMed ID: 33049532 [TBL] [Abstract][Full Text] [Related]
33. Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. Zhang R; Li J; Zhou L; Zhuang H; Shen S; Wang Y Environ Sci Pollut Res Int; 2023 Feb; 30(10):27863-27874. PubMed ID: 36394812 [TBL] [Abstract][Full Text] [Related]
34. Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Chen Z; Zhang W; Yang L; Stedtfeld RD; Peng A; Gu C; Boyd SA; Li H Environ Pollut; 2019 May; 248():947-957. PubMed ID: 30861417 [TBL] [Abstract][Full Text] [Related]
35. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years. Peng S; Feng Y; Wang Y; Guo X; Chu H; Lin X J Hazard Mater; 2017 Oct; 340():16-25. PubMed ID: 28711829 [TBL] [Abstract][Full Text] [Related]
36. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge. Jang HM; Lee J; Kim YB; Jeon JH; Shin J; Park MR; Kim YM Bioresour Technol; 2018 Feb; 249():635-643. PubMed ID: 29091848 [TBL] [Abstract][Full Text] [Related]
37. Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting. Qian X; Sun W; Gu J; Wang XJ; Zhang YJ; Duan ML; Li HC; Zhang RR Bioresour Technol; 2016 Nov; 220():425-432. PubMed ID: 27598571 [TBL] [Abstract][Full Text] [Related]
38. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Zhang YJ; Hu HW; Gou M; Wang JT; Chen D; He JZ Environ Pollut; 2017 Dec; 231(Pt 2):1621-1632. PubMed ID: 28964602 [TBL] [Abstract][Full Text] [Related]
39. Distribution of antibiotic, heavy metals and antibiotic resistance genes in livestock and poultry feces from different scale of farms in Ningxia, China. Peng S; Zhang H; Song D; Chen H; Lin X; Wang Y; Ji L J Hazard Mater; 2022 Oct; 440():129719. PubMed ID: 35985212 [TBL] [Abstract][Full Text] [Related]
40. Fate of microbial pollutants and evolution of antibiotic resistance in three types of soil amended with swine slurry. Sui Q; Zhang J; Chen M; Wang R; Wang Y; Wei Y Environ Pollut; 2019 Feb; 245():353-362. PubMed ID: 30448505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]