These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33592438)

  • 1. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport.
    Liang Y; Luo Y; Lu Z; Klumpp E; Shen C; Bradford SA
    Environ Pollut; 2021 May; 276():116661. PubMed ID: 33592438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil.
    Liang Y; Bradford SA; Simunek J; Heggen M; Vereecken H; Klumpp E
    Environ Sci Technol; 2013; 47(21):12229-37. PubMed ID: 24106877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media.
    Liang Y; Zhou J; Dong Y; Klumpp E; Šimůnek J; Bradford SA
    Environ Pollut; 2020 Mar; 258():113803. PubMed ID: 31864922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil.
    Makselon J; Siebers N; Meier F; Vereecken H; Klumpp E
    Environ Pollut; 2018 Jul; 238():1027-1034. PubMed ID: 29449114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter.
    Adrian YF; Schneidewind U; Bradford SA; Šimůnek J; Klumpp E; Azzam R
    Environ Pollut; 2019 Dec; 255(Pt 1):113124. PubMed ID: 31622956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of silver nanoparticles (AgNPs) in soil.
    Sagee O; Dror I; Berkowitz B
    Chemosphere; 2012 Jul; 88(5):670-5. PubMed ID: 22516207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of clay colloid - CuO nanoparticles interaction on retention of nanoparticles in different types of soils: role of clay fraction and environmental parameters.
    Tiwari E; Khandelwal N; Singh N; Biswas S; Darbha GK
    Environ Res; 2022 Jan; 203():111885. PubMed ID: 34390712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of biochar incorporation on the collector surface properties and the transport of silver nanoparticles in porous media.
    Yun J; Liang Y; Muhammad Y; Liu F; Dong Y; Wang S
    J Environ Manage; 2023 Feb; 328():116943. PubMed ID: 36516715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam.
    Braun A; Klumpp E; Azzam R; Neukum C
    Sci Total Environ; 2015 Dec; 535():102-12. PubMed ID: 25527873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment.
    Mahdi KNM; Peters R; van der Ploeg M; Ritsema C; Geissen V
    Water Air Soil Pollut; 2018; 229(10):334. PubMed ID: 30416217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.
    Koopmans GF; Hiemstra T; Regelink IC; Molleman B; Comans RN
    J Chromatogr A; 2015 May; 1392():100-9. PubMed ID: 25798868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating.
    He J; Wang D; Zhou D
    Sci Total Environ; 2019 Jan; 648():102-108. PubMed ID: 30114581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.
    Rahmatpour S; Shirvani M; Mosaddeghi MR; Bazarganipour M
    J Environ Manage; 2017 May; 193():136-145. PubMed ID: 28213297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil.
    Makselon J; Zhou D; Engelhardt I; Jacques D; Klumpp E
    Environ Sci Technol; 2017 Feb; 51(4):2096-2104. PubMed ID: 28177254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons.
    Wang K; Zhang Y; Sun B; Yang Y; Xiao B; Zhu L
    Chemosphere; 2021 Nov; 283():131159. PubMed ID: 34144287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro- and nanoplastics retention in porous media exhibits different dependence on grain surface roughness and clay coating with particle size.
    Liang Y; Luo Y; Shen C; Bradford SA
    Water Res; 2022 Aug; 221():118717. PubMed ID: 35749921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering silver nanoparticles perturbation effects and risks for soil enzymes worldwide: Insights from machine learning and soil property integration.
    Zhang Z; Lin J; Owens G; Chen Z
    J Hazard Mater; 2024 May; 469():134052. PubMed ID: 38493625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.