These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33592447)

  • 1. Accumulation of different metals in oyster Crassostrea gigas: Significance and specificity of SLC39A (ZIP) and SLC30A (ZnT) gene families and polymorphism variation.
    Meng J; Wang WX; Li L; Zhang G
    Environ Pollut; 2021 May; 276():116706. PubMed ID: 33592447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of SNPs involved in Zn and Cu accumulation in the Pacific oyster (Crassostrea gigas) by genome-wide association analysis.
    Meng J; Wang W; Shi R; Song K; Li L; Que H; Zhang G
    Ecotoxicol Environ Saf; 2020 Apr; 192():110208. PubMed ID: 32044602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The c.503A>G polymorphism in ZIP1-II of Pacific oyster Crassostrea gigas associated with zinc content.
    Luo C; Kong N; Li X; Sun S; Jiang C; Qiao X; Wang L; Song L
    Comp Biochem Physiol B Biochem Mol Biol; 2024; 273():110988. PubMed ID: 38768804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc fluxes and zinc transporter genes in chronic diseases.
    Devirgiliis C; Zalewski PD; Perozzi G; Murgia C
    Mutat Res; 2007 Sep; 622(1-2):84-93. PubMed ID: 17374385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Response of Cardiomyocyte ZIPs and ZnTs to Extracellular Zinc and TPEN.
    Thokala S; Bodiga VL; Kudle MR; Bodiga S
    Biol Trace Elem Res; 2019 Dec; 192(2):297-307. PubMed ID: 30778755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of copper and zinc accumulation in defense against bacterial pathogen in the fujian oyster (Crassostrea angulata).
    Shi B; Wang T; Zeng Z; Zhou L; You W; Ke C
    Fish Shellfish Immunol; 2019 Sep; 92():72-82. PubMed ID: 31129186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.
    Luo L; Ke C; Guo X; Shi B; Huang M
    Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas.
    Kong N; Zhao Q; Liu C; Li J; Liu Z; Gao L; Wang L; Song L
    Gene; 2020 Aug; 750():144759. PubMed ID: 32423892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression pattern and prognostic implication of zinc homeostasis-related genes in acute myeloid leukemia.
    Zhu B; Yang C; Sun L; Li Z; Li J; Hua ZC
    Metallomics; 2023 May; 15(5):. PubMed ID: 37061789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internalization and trafficking of zinc transporters.
    Zhang C
    Methods Enzymol; 2023; 687():241-262. PubMed ID: 37666634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Perspectives in Zinc Transporter Research in Prostate Cancer: An Updated Review.
    Acevedo S; Segovia MF; de la Fuente-Ortega E
    Nutrients; 2024 Jun; 16(13):. PubMed ID: 38999774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stage-specific differential expression of zinc transporter SLC30A and SLC39A family proteins during prostate tumorigenesis.
    Prasad RR; Raina K; Mishra N; Tomar MS; Kumar R; Palmer AE; Maroni P; Agarwal R
    Mol Carcinog; 2022 May; 61(5):454-471. PubMed ID: 35049094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification and characterization of superoxide dismutases in four oyster species reveals functional differentiation in response to biotic and abiotic stress.
    Liu Y; Bao Z; Lin Z; Xue Q
    BMC Genomics; 2022 May; 23(1):378. PubMed ID: 35585505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cadmium and zinc on gene expression of novel molecular biomarkers in the mangrove oyster Crassostrea gasar.
    Ferreira CP; Bastolla CLV; Saldaña-Serrano M; Lima D; de M Gomes CHA; Schroeder DC; Bainy ACD; Lüchmann KH
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Aug; 270():109641. PubMed ID: 37137384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters.
    Cirovic A; Cirovic A; Yimthiang S; Vesey DA; Satarug S
    Biomolecules; 2024 May; 14(6):. PubMed ID: 38927054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nrf2-ARE-Dependent Alterations in Zinc Transporter mRNA Expression in HepG2 Cells.
    Ishida T; Takechi S
    PLoS One; 2016; 11(11):e0166100. PubMed ID: 27812191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc and Gastrointestinal Disorders: A Role for the Zinc Transporters Zips and ZnTs.
    Myers S; Shastri MD; Adulcikas J; Sohal SS; Norouzi S
    Curr Pharm Des; 2017; 23(16):2328-2332. PubMed ID: 28120719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.
    Kambe T; Matsunaga M; Takeda TA
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29048339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression.
    Nemmiche S; Guiraud P
    Toxicol In Vitro; 2016 Dec; 37():169-177. PubMed ID: 27647474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells.
    Gyulkhandanyan AV; Lu H; Lee SC; Bhattacharjee A; Wijesekara N; Fox JE; MacDonald PE; Chimienti F; Dai FF; Wheeler MB
    J Biol Chem; 2008 Apr; 283(15):10184-97. PubMed ID: 18250168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.