These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33592525)

  • 1. Predicting coffee ring formation upon drying in droplets of particle suspensions.
    Hertaeg MJ; Rees-Zimmerman C; Tabor RF; Routh AF; Garnier G
    J Colloid Interface Sci; 2021 Jun; 591():52-57. PubMed ID: 33592525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drying of Droplets of Colloidal Suspensions on Rough Substrates.
    Pham T; Kumar S
    Langmuir; 2017 Sep; 33(38):10061-10076. PubMed ID: 28828859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast evaporation of spreading droplets of colloidal suspensions.
    Maki KL; Kumar S
    Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DC field coupled evaporation of a sessile gold nanofluid droplet.
    Zaibudeen AW; Bandyopadhyay R
    Soft Matter; 2021 Nov; 17(45):10294-10300. PubMed ID: 34782898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drying Kinetics and Particle Formation from Dilute Colloidal Suspensions in Aerosol Droplets.
    Archer J; Walker JS; Gregson FKA; Hardy DA; Reid JP
    Langmuir; 2020 Oct; 36(42):12481-12493. PubMed ID: 32975425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets.
    Das S; Dey A; Reddy G; Sarma DD
    J Phys Chem Lett; 2017 Oct; 8(19):4704-4709. PubMed ID: 28885853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant Control of Coffee Ring Formation in Carbon Nanotube Suspensions.
    Howard NS; Archer AJ; Sibley DN; Southee DJ; Wijayantha KGU
    Langmuir; 2023 Jan; 39(3):929-41. PubMed ID: 36607610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drying-mediated patterns in colloid-polymer suspensions.
    Ryu SA; Kim JY; Kim SY; Weon BM
    Sci Rep; 2017 Apr; 7(1):1079. PubMed ID: 28439069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Immiscible Secondary Fluid on Particle Dynamics and Coffee Ring Characteristics during Suspension Drying.
    Jung KI; Park BS; Lee SJ; Noh SM; Jung HW
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32759811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation.
    Yen TM; Fu X; Wei T; Nayak RU; Shi Y; Lo YH
    Sci Rep; 2018 Feb; 8(1):3157. PubMed ID: 29453347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying of Ethanol/Water Droplets Containing Silica Nanoparticles.
    Shi J; Yang L; Bain CD
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14275-14285. PubMed ID: 30901186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sagging of evaporating droplets of colloidal suspensions on inclined substrates.
    Espín L; Kumar S
    Langmuir; 2014 Oct; 30(40):11966-74. PubMed ID: 25229746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction.
    Crivoi A; Duan F
    Langmuir; 2013 Oct; 29(39):12067-74. PubMed ID: 24015843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-pinning of silica suspension droplets on hydrophobic surfaces.
    Yang KC; Wang C; Hu TY; Lin HP; Cho KH; Chen LJ
    J Colloid Interface Sci; 2020 Nov; 579():212-220. PubMed ID: 32590161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation.
    Crivoi A; Zhong X; Duan F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032302. PubMed ID: 26465468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Particle Concentration on Surfactant-Induced Alteration of the Contact Line Deposition in Evaporating Sessile Droplets.
    Inanlu MJ; Shojaan B; Farhadi J; Bazargan V
    Langmuir; 2021 Mar; 37(8):2658-2666. PubMed ID: 33522826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets.
    Crivoi A; Duan F
    Sci Rep; 2014 Mar; 4():4310. PubMed ID: 24603647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation-Driven Liquid-Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids.
    Almohammadi H; Fu Y; Mezzenga R
    ACS Nano; 2023 Feb; 17(3):3098-3106. PubMed ID: 36719319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple approach for coffee-ring suppression yielding homogeneous drying patterns of ZnO and TiO
    Marica I; Stefan M; Boca S; Falamaş A; Farcău C
    J Colloid Interface Sci; 2023 Apr; 635():117-127. PubMed ID: 36580694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption.
    Ren J; Crivoi A; Duan F
    Langmuir; 2020 Dec; 36(49):15064-15074. PubMed ID: 33317269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.