These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33593)

  • 1. Mechanism of acridine uptake by submitochondrial particles.
    Dell'Antone P; Cusinato O; Volpato O
    Arch Biochem Biophys; 1978 Dec; 191(2):413-25. PubMed ID: 33593
    [No Abstract]   [Full Text] [Related]  

  • 2. Sodium/proton antiporter of rat liver mitochondria.
    Rosen BP; Futai M
    FEBS Lett; 1980 Aug; 117(1):39-43. PubMed ID: 6250900
    [No Abstract]   [Full Text] [Related]  

  • 3. [Induction of hydrogen ion transport in mitochondrial membranes].
    Sharyshev AA; Novogorodov SA; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(1):52-7. PubMed ID: 7066402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submitochondrial localization of transferrin and iron accumulated by isolated rat liver mitochondria.
    Konopka K; Turska E
    FEBS Lett; 1979 Sep; 105(1):85-9. PubMed ID: 488346
    [No Abstract]   [Full Text] [Related]  

  • 5. The membrane structure studied with cationic dyes. 1. The binding of cationic dyes to submitochondrial particles and the question of the polarity of the ion-translocation mechanism.
    Dell'Antone P; Colonna R; Azzone GF
    Eur J Biochem; 1972 Jan; 24(3):553-65. PubMed ID: 5058599
    [No Abstract]   [Full Text] [Related]  

  • 6. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system].
    Novgorodov SA; Dragunova SF; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(2):244-8. PubMed ID: 6462181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artefacts in the estimation of ADP analogs as phosphate acceptors in mitochondrial oxidative phosphorylation.
    Petrescu I; Lascu I; Porumb H; Bàrzu O
    FEBS Lett; 1981 Mar; 125(1):111-4. PubMed ID: 7227536
    [No Abstract]   [Full Text] [Related]  

  • 8. Characteristics of the active transport of Ca2+ by submitochondrial vesicles.
    Niggli V; Mattenberger M; Gazzotti P
    Eur J Biochem; 1978 Sep; 89(2):361-6. PubMed ID: 710397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chronic ethanol consumption of energy-linked processes associated with oxidative phosphorylation: proton translocation and ATP-Pi exchange.
    Bottenus RE; Spach PI; Filus S; Cunningham CC
    Biochem Biophys Res Commun; 1982 Apr; 105(4):1368-73. PubMed ID: 7201796
    [No Abstract]   [Full Text] [Related]  

  • 10. ADP-ribosylation in inner membrane of rat liver mitochondria.
    Richter C; Winterhalter KH; Baumhüter S; Lötscher HR; Moser B
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3188-92. PubMed ID: 6574480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Submitochondrial distribution of cAMP during incubation with rat liver mitochondria].
    Kulinskiĭ VI; Zobova NV
    Biokhimiia; 1985 Sep; 50(9):1546-52. PubMed ID: 2996639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy-linked H+ efflux and uncoupler-induced H+ influx in submitochondrial particles from skeletal muscle.
    Scott DM; Storey BT; Lee CP
    Biochem Biophys Res Commun; 1979 Apr; 87(4):1058-65. PubMed ID: 37831
    [No Abstract]   [Full Text] [Related]  

  • 14. [Electron spin resonance of phosphorylating and non-phosphorylating submitochondrial particles].
    Nedelina OS; Vishnevskiĭ ES; Brzhevskaia ON; Sheksheev EM; Kaiushin LP
    Biofizika; 1982; 27(3):463-6. PubMed ID: 6284252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation.
    Saks VA; Kupriyanov VV; Elizarova GV; Jacobus WE
    J Biol Chem; 1980 Jan; 255(2):755-63. PubMed ID: 7356643
    [No Abstract]   [Full Text] [Related]  

  • 16. Phloretin - an uncoupler and an inhibitor of mitochondrial oxidative phosphorylation.
    De Jonge PC; Wieringa T; Van Putten JP; Krans HM; Van Dam K
    Biochim Biophys Acta; 1983 Jan; 722(1):219-25. PubMed ID: 6130789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.
    Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ
    Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of exogenous FMN by isolated rat liver mitochondria. Significance to the mobilization of iron from ferritin.
    Ulvik RJ; Romslo I
    Biochim Biophys Acta; 1981 May; 635(3):457-69. PubMed ID: 7236674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles].
    Grigolava IV; Ksenzenko MIu; Konstantinob AA; Tikhonov AN; Kerimov TM
    Biokhimiia; 1980 Jan; 45(1):75-82. PubMed ID: 6260236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of iron-sulfur clusters in rat liver submitochondrial particles by electron paramagnetic resonance spectroscopy. Alterations produced by chronic ethanol consumption.
    Thayer WS; Ohnishi T; Rubin E
    Biochim Biophys Acta; 1980 Jun; 591(1):22-36. PubMed ID: 6248107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.