These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33593180)

  • 21. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers.
    Du Clos KT; Dabiri JO; Costello JH; Colin SP; Morgan JR; Fogerson SM; Gemmell BJ
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31740507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wake dynamics and fluid forces of turning maneuvers in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Feb; 204(Pt 3):431-42. PubMed ID: 11171296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.
    Tytell ED
    Proc Biol Sci; 2004 Dec; 271(1557):2535-40. PubMed ID: 15615678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.
    Esposito CJ; Tangorra JL; Flammang BE; Lauder GV
    J Exp Biol; 2012 Jan; 215(Pt 1):56-67. PubMed ID: 22162853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).
    McHenry MJ; Azizi E; Strother JA
    J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fish locomotion: recent advances and new directions.
    Lauder GV
    Ann Rev Mar Sci; 2015; 7():521-45. PubMed ID: 25251278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
    Ngo V; McHenry MJ
    J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thrust generation and propulsive efficiency in dolphin-like swimming propulsion.
    Guo J; Zhang W; Han P; Fish FE; Dong H
    Bioinspir Biomim; 2023 Jul; 18(5):. PubMed ID: 37414002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved swimming performance in schooling fish via leading-edge vortex enhancement.
    Seo JH; Mittal R
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36261046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thunniform swimming: muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (Thunnus albacares).
    Shadwick RE; Syme DA
    J Exp Biol; 2008 May; 211(Pt 10):1603-11. PubMed ID: 18456888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of time-varying kinematics of a dolphin in burst accelerating swimming.
    Tanaka H; Li G; Uchida Y; Nakamura M; Ikeda T; Liu H
    PLoS One; 2019; 14(1):e0210860. PubMed ID: 30699184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergence of undulatory swimming kinematics across a diversity of fishes.
    Di Santo V; Goerig E; Wainwright DK; Akanyeti O; Liao JC; Castro-Santos T; Lauder GV
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34853171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.