These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33593188)

  • 1. Hydrothermal physiology and climate vulnerability in amphibians.
    Greenberg DA; Palen WJ
    Proc Biol Sci; 2021 Feb; 288(1945):20202273. PubMed ID: 33593188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming.
    Delgado-Suazo P; Burrowes PA
    J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling.
    von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL
    PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles.
    Frishkoff LO; Hadly EA; Daily GC
    Glob Chang Biol; 2015 Nov; 21(11):3901-16. PubMed ID: 26148337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water loss and temperature interact to compound amphibian vulnerability to climate change.
    Lertzman-Lepofsky GF; Kissel AM; Sinervo B; Palen WJ
    Glob Chang Biol; 2020 Sep; 26(9):4868-4879. PubMed ID: 32662211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA
    Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of Late Quaternary climate-change velocity on species endemism.
    Sandel B; Arge L; Dalsgaard B; Davies RG; Gaston KJ; Sutherland WJ; Svenning JC
    Science; 2011 Nov; 334(6056):660-4. PubMed ID: 21979937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian.
    Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R
    Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review and synthesis of the effects of climate change on amphibians.
    Li Y; Cohen JM; Rohr JR
    Integr Zool; 2013 Jun; 8(2):145-61. PubMed ID: 23731811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients.
    Enriquez-Urzelai U; Tingley R; Kearney MR; Sacco M; Palacio AS; Tejedo M; Nicieza AG
    J Anim Ecol; 2020 Jul; 89(7):1722-1734. PubMed ID: 32221971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen.
    Spicer JI; Morley SA; Bozinovic F
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20190032. PubMed ID: 31203758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global variation in thermal tolerances and vulnerability of endotherms to climate change.
    Khaliq I; Hof C; Prinzinger R; Böhning-Gaese K; Pfenninger M
    Proc Biol Sci; 2014 Aug; 281(1789):20141097. PubMed ID: 25009066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projecting marine species range shifts from only temperature can mask climate vulnerability.
    McHenry J; Welch H; Lester SE; Saba V
    Glob Chang Biol; 2019 Dec; 25(12):4208-4221. PubMed ID: 31487434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability.
    Perotti MG; Bonino MF; Ferraro D; Cruz FB
    Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating population-level variation in thermal performance into predictions of geographic range shifts.
    Angert AL; Sheth SN; Paul JR
    Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroregulation in a tropical dry-skinned ectotherm.
    Pintor AF; Schwarzkopf L; Krockenberger AK
    Oecologia; 2016 Dec; 182(4):925-931. PubMed ID: 27384338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticipating changes in wildlife habitat induced by private forest owners' adaptation to climate change and carbon policy.
    Hashida Y; Withey J; Lewis DJ; Newman T; Kline JD
    PLoS One; 2020; 15(4):e0230525. PubMed ID: 32240191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental and historical constraints on global patterns of amphibian richness.
    Buckley LB; Jetz W
    Proc Biol Sci; 2007 May; 274(1614):1167-73. PubMed ID: 17327208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the NatureServe Climate Change Vulnerability Index as an Assessment Tool for Reptiles and Amphibians: Lessons Learned.
    Tuberville TD; Andrews KM; Sperry JH; Grosse AM
    Environ Manage; 2015 Oct; 56(4):822-34. PubMed ID: 25971738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity.
    Hof C; Voskamp A; Biber MF; Böhning-Gaese K; Engelhardt EK; Niamir A; Willis SG; Hickler T
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13294-13299. PubMed ID: 30530689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.