BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33593246)

  • 1. Electrostatic Potential Energy in Protein-Drug Complexes.
    Bitencourt-Ferreira G; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(24):4954-4971. PubMed ID: 33593246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2022; 29(14):2438-2455. PubMed ID: 34365938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS.
    Bitencourt-Ferreira G; Rizzotto C; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(9):1746-1756. PubMed ID: 32410551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets: A Study of Cyclin-Dependent Kinase 2.
    Bitencourt-Ferreira G; Duarte da Silva A; Filgueira de Azevedo W
    Curr Med Chem; 2021; 28(2):253-265. PubMed ID: 31729287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic Energy in Protein-Ligand Complexes.
    Bitencourt-Ferreira G; Veit-Acosta M; de Azevedo WF
    Methods Mol Biol; 2019; 2053():67-77. PubMed ID: 31452099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Scoring Function Space: Developing Computational Models for Drug Discovery.
    Bitencourt-Ferreira G; Villarreal MA; Quiroga R; Biziukova N; Poroikov V; Tarasova O; de Azevedo Junior WF
    Curr Med Chem; 2024; 31(17):2361-2377. PubMed ID: 36944627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.
    Heck GS; Pintro VO; Pereira RR; de Ávila MB; Levin NMB; de Azevedo WF
    Curr Med Chem; 2017; 24(23):2459-2470. PubMed ID: 28641555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taba: A Tool to Analyze the Binding Affinity.
    da Silva AD; Bitencourt-Ferreira G; de Azevedo WF
    J Comput Chem; 2020 Jan; 41(1):69-73. PubMed ID: 31410856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for calculation of ligand-binding affinity.
    de Azevedo WF; Dias R
    Curr Drug Targets; 2008 Dec; 9(12):1031-9. PubMed ID: 19128212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoring functions for prediction of protein-ligand interactions.
    Wang JC; Lin JH
    Curr Pharm Des; 2013; 19(12):2174-82. PubMed ID: 23016847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.
    Bitencourt-Ferreira G; de Azevedo WF
    Biophys Chem; 2018 Sep; 240():63-69. PubMed ID: 29906639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes.
    Raha K; Merz KM
    J Med Chem; 2005 Jul; 48(14):4558-75. PubMed ID: 15999994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning to Predict Binding Affinity.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():251-273. PubMed ID: 31452110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of CDK-targeted scoring functions for prediction of binding affinity.
    Levin NMB; Pintro VO; Bitencourt-Ferreira G; de Mattos BB; de Castro Silvério A; de Azevedo WF
    Biophys Chem; 2018 Apr; 235():1-8. PubMed ID: 29407904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scoring a diverse set of high-quality docked conformations: a metascore based on electrostatic and desolvation interactions.
    Camacho CJ; Ma H; Champ PC
    Proteins; 2006 Jun; 63(4):868-77. PubMed ID: 16506242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.