These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33593246)

  • 21. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust scoring functions for protein-ligand interactions with quantum chemical charge models.
    Wang JC; Lin JH; Chen CM; Perryman AL; Olson AJ
    J Chem Inf Model; 2011 Oct; 51(10):2528-37. PubMed ID: 21932857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes.
    Pason LP; Sotriffer CA
    Mol Inform; 2016 Dec; 35(11-12):541-548. PubMed ID: 27870243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the Scoring Function Space.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():275-281. PubMed ID: 31452111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.
    de Azevedo WF; Quiroga R; Villarreal MA; da Silveira NJF; Bitencourt-Ferreira G; da Silva AD; Veit-Acosta M; Oliveira PR; Tutone M; Biziukova N; Poroikov V; Tarasova O; Baud S
    J Comput Chem; 2024 Oct; 45(27):2333-2346. PubMed ID: 38900052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking.
    Li J; Fu A; Zhang L
    Interdiscip Sci; 2019 Jun; 11(2):320-328. PubMed ID: 30877639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease.
    Kumar P; Dominiak PM
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computationally predicting binding affinity in protein-ligand complexes: free energy-based simulations and machine learning-based scoring functions.
    Wang DD; Zhu M; Yan H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SAnDReS a Computational Tool for Statistical Analysis of Docking Results and Development of Scoring Functions.
    Xavier MM; Heck GS; Avila MB; Levin NMB; Pintro VO; Carvalho NL; Azevedo WF
    Comb Chem High Throughput Screen; 2016; 19(10):801-812. PubMed ID: 27686428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized Virtual Screening Workflow: Towards Target-Based Polynomial Scoring Functions for HIV-1 Protease.
    Pintro VO; de Azevedo WF
    Comb Chem High Throughput Screen; 2017; 20(9):820-827. PubMed ID: 29165067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the binding affinity estimations of protein-ligand complexes using machine-learning facilitated force field method.
    Soni A; Bhat R; Jayaram B
    J Comput Aided Mol Des; 2020 Aug; 34(8):817-830. PubMed ID: 32185583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.
    Bauer MR; Mackey MD
    J Med Chem; 2019 Mar; 62(6):3036-3050. PubMed ID: 30807144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Van der Waals Potential in Protein Complexes.
    Bitencourt-Ferreira G; Veit-Acosta M; de Azevedo WF
    Methods Mol Biol; 2019; 2053():79-91. PubMed ID: 31452100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening.
    Cang Z; Mu L; Wei GW
    PLoS Comput Biol; 2018 Jan; 14(1):e1005929. PubMed ID: 29309403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).
    Lindblom PR; Wu G; Liu Z; Jim KC; Baldwin JJ; Gregg RE; Claremon DA; Singh SB
    J Mol Graph Model; 2014 Sep; 53():118-127. PubMed ID: 25123650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.