BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33593554)

  • 21. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release.
    Radmansouri M; Bahmani E; Sarikhani E; Rahmani K; Sharifianjazi F; Irani M
    Int J Biol Macromol; 2018 Sep; 116():378-384. PubMed ID: 29723626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering.
    Shaltooki M; Dini G; Mehdikhani M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide.
    Irani M; Mir Mohamad Sadeghi G; Haririan I
    Biomed Pharmacother; 2017 Apr; 88():667-676. PubMed ID: 28152475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering.
    Shalumon KT; Anulekha KH; Chennazhi KP; Tamura H; Nair SV; Jayakumar R
    Int J Biol Macromol; 2011 May; 48(4):571-6. PubMed ID: 21291908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release.
    Mamidi N; Zuníga AE; Villela-Castrejón J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110928. PubMed ID: 32409077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma.
    Zhu LF; Zheng Y; Fan J; Yao Y; Ahmad Z; Chang MW
    Eur J Pharm Sci; 2019 Sep; 137():105002. PubMed ID: 31302215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.
    Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y
    Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of PLLA/chitosan-graft-poly (ε-caprolactone) (CS-g-PCL) composite fibrous mats: The microstructure, performance and proliferation assessment.
    Xu Y; Liu B; Zou L; Sun C; Li W
    Int J Biol Macromol; 2020 Nov; 162():320-332. PubMed ID: 32574742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Length effect of methoxy poly(ethylene oxide)-b-[poly(ε-caprolactone)-g-poly(methacrylic acid)] copolymers on cisplatin delivery.
    Chen HY; Lo YL; Wu PL; Lo PC; Wang LF
    Colloids Surf B Biointerfaces; 2017 Aug; 156():243-253. PubMed ID: 28535473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of biphasic drug release behavior by graphene oxide in polyvinyl pyrrolidone/poly(ε-caprolactone) core/sheath nanofiber mats.
    Yu H; Yang P; Jia Y; Zhang Y; Ye Q; Zeng S
    Colloids Surf B Biointerfaces; 2016 Oct; 146():63-9. PubMed ID: 27259160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly-ε-caprolactone (PCL)/poly-l-lactic acid (PLLA) nanofibers loaded by nanoparticles-containing TGF-β1 with linearly arranged transforming structure as a scaffold in cartilage tissue engineering.
    Kalvand E; Bakhshandeh H; Nadri S; Habibizadeh M; Rostamizadeh K
    J Biomed Mater Res A; 2023 Dec; 111(12):1838-1849. PubMed ID: 37395312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors.
    Bilensoy E; Sarisozen C; Esendağli G; Doğan AL; Aktaş Y; Sen M; Mungan NA
    Int J Pharm; 2009 Apr; 371(1-2):170-6. PubMed ID: 19135514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver-loaded biomimetic hydroxyapatite grafted poly(epsilon-caprolactone) composite nanofibers: a cytotoxicity study.
    Nirmala R; Kang HS; Park HM; Navamathavan R; Jeong IS; Kim HY
    J Biomed Nanotechnol; 2012 Feb; 8(1):125-32. PubMed ID: 22515100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity.
    Ramírez-Agudelo R; Scheuermann K; Gala-García A; Monteiro APF; Pinzón-García AD; Cortés ME; Sinisterra RD
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():25-34. PubMed ID: 29208285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering.
    Zhang H; Xia J; Pang X; Zhao M; Wang B; Yang L; Wan H; Wu J; Fu S
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():537-543. PubMed ID: 28183642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering.
    Shalumon KT; Sowmya S; Sathish D; Chennazhi KP; Nair SV; Jayakumar R
    J Biomed Nanotechnol; 2013 Mar; 9(3):430-40. PubMed ID: 23620999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO
    Samadi S; Moradkhani M; Beheshti H; Irani M; Aliabadi M
    Int J Biol Macromol; 2018 Apr; 110():416-424. PubMed ID: 28801095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells.
    Lin TC; Lin FH; Lin JC
    Acta Biomater; 2012 Jul; 8(7):2704-11. PubMed ID: 22484694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.